
SWIFI FAULT INJECTOR FOR
HETEROGENEOUS MANY-CORE

PROCESSORS

INYECTOR DE FALLAS SWIFI PARA PROCESADORES
HETEROGÉNEOS MANY-CORE

Vanessa Vargas1

Pablo Ramos2

Jean-François Méhaut3
Raoul Velazco4

1 Universidad de las Fuerzas Armadas ESPE, DEEE, Sangolquí, Ecuador (vcvargas@espe.edu.ec).
2 Universidad de las Fuerzas Armadas ESPE, DEEE, Sangolquí, Ecuador (pframos@espe.edu.ec).
3 Université Grenoble-Alpes, LIG Labs, Grenoble, Francia (jean-francois.mehaut@univ-grenoble-alpes.fr).
4 Université Grenoble-Alpes, TIMA Labs, Grenoble, Francia (raoul.velazco@univ-grenoble-alpes.fr).

Recibido: 15 de enero de 2018
Aceptado: 31 de enero de 2018

380

381

REVISTA PUCE. ISSN: 2528-8156. NÚM.106.
3 DE MAYO DE 2018 - 3 DE NOV. DE 2018, VARGAS, RAMOS, MÉHAUT, VELAZCO, PP. 379-410

SWIFI FAULT INJECTOR FOR
HETEROGENEOUS MANY-CORE

PROCESSORS

INYECTOR DE FALLAS SWIFI PARA PROCESADORES
HETEROGÉNEOS MANY-CORE

Vanessa Vargas, Pablo Ramos, Jean-François Méhaut, Raoul Velazco

Keywords: Error rate, Fault injection, Many-core, Heterogeneous, Reliability, SEE,
SEU, Soft Error

Palabras clave: Tasa de error, Inyección de fallos, Many-core, Heterogéneo,
Fiabilidad, SEE, SEU, Soft-error

Abstract

This work presents a fault-injec-
tion approach for evaluating the impact
of soft-errors on applications running on
a heterogeneous many-core processor.
This evaluation is meaningful to charac-
terize the behavior of the application im-
plemented in advanced devices in terms
of reliability. The approach is based on
the principles of a mono-core fault-injec-
tion model called Code Emulating Upset

(CEU) which has been demonstrated to
be very efficient to predict the soft-error
rate. CEU principles are extended to a
heterogeneous many-core processor, in
spite of its complex architecture mainly
related to its memory management and
inter-core communication. The selected
target device is the KALRAY MPPA-256
many-core processor manufactured in
28nm CMOS technology and having a

382

SWIFI FAULT INJECTOR FOR HETEROGENEOUS MANY-CORE PROCESSORS

clustered architecture. Considering, the
variety of system configurations that can
be implemented on a many-core pro-
cessor, the present work proposes three
different scenarios to illustrate the use of
the approach. In the first one, a parallel
version of a memory-bound application
is implemented on bare-board model
and configured on Asymmetric Multi-
processing Mode. The second one eval-
uates a distributed version of the memo-
ry-bound application running on a POSIX
model. The last one assesses a distribut-
ed CPU-bound application running on a

POSIX model. Results of the first scenario
have been used to predict the soft-er-
ror rate of a bare-board application and
have been compared to radiation exper-
iments performed in a previous work,
showing a good agreement between
both techniques. This fact has motivated
the extension of the approach to a more
useful programming models such as
POSIX. The current work retrieves results
already presented in previous works by
authors in order to compare them with
the new ones to provide further conclu-
sions of the proposed approach.

Resumen

Este trabajo presenta un enfoque
de inyección de fallas para evaluar el im-
pacto de soft errors en aplicaciones que
se ejecutan en un procesador heterogé-
neo de muchos núcleos. Esta evaluación
es significativa para caracterizar el com-
portamiento de la aplicación imple-
mentada en dispositivos avanzados en
términos de confiabilidad. El enfoque
se basa en los principios de un modelo
mono-procesador de inyección de fallas
llamado Code Emulating Upset (CEU), el
mismo que ha demostrado ser muy efi-
ciente para predecir la tasa de soft errors.
Los principios CEU fueron adaptados a
un procesador heterogéneo de muchos
núcleos a pesar de la complejidad de

su arquitectura, relacionada principal-
mente con la gestión de memoria y co-
municación entre núcleos. El dispositivo
de prueba seleccionado es el procesa-
dor de múltiples núcleos KALRAY MPPA-
256 fabricado en tecnología CMOS de
28nm y que posee una arquitectura tipo
cluster. Teniendo en cuenta la variedad
de configuraciones de sistema que se
pueden implementar en un procesador
de muchos núcleos, el presente trabajo
propone tres escenarios diferentes para
ilustrar el uso del enfoque. En el primero,
una versión paralela de una aplicación de
tipo memory-bound se implementa en
un modelo bare-board y se configura en
modo de multiprocesamiento asimétri-

383

REVISTA PUCE. ISSN: 2528-8156. NÚM.106.
3 DE MAYO DE 2018 - 3 DE NOV. DE 2018, VARGAS, RAMOS, MÉHAUT, VELAZCO, PP. 379-410

co. El segundo evalúa una versión dis-
tribuida de una aplicación de tipo mem-
ory-bound que se ejecuta en un modelo
POSIX. El último evalúa una aplicación
distribuida de tipo CPU-bound que se
ejecuta en un modelo POSIX. Los resulta-
dos del primer escenario se han utilizado
para predecir la tasa de soft errors de una
aplicación bare-board y se han compara-
do con experimentos de radiación real-
izados en un trabajo previo, mostrando

una buena concordancia entre ambas
técnicas. Este hecho ha motivado la ex-
tensión del enfoque hacia modelos de
programación más útiles como POSIX.
El trabajo actual utiliza los resultados ya
presentados en trabajos anteriores por
los autores con el fin de compararlos con
los nuevos resultados y así proporcionar
mayores conclusiones del enfoque pro-
puesto.

Introduction

The use of multi/many-core pro-
cessor based platforms is becoming
more frequent in computing systems
due to their flexibility, high performance
and redundancy capabilities. However,
having complex devices that integrate
several cores in the same chip, results
in a potential increase of the chip sensi-
tivity to the effects of natural radiation,
especially at avionic altitudes or in space
environments (Johnston, 2000). This ra-
diation may result in transient and per-
manent failures, called Single Event Ef-
fects (SEE). Among these effects, Single
Event Upsets (SEUs) (Baumann, 2005) are
the most critical since these effects may
produce changes, randomly in time and
location, on bit information of a memo-
ry cell which may affect the results of an
application running on these processors.

For this reason, estimating the SEU error
rate is a mandatory step for any applica-
tion requiring reliability, no matter the
operating environment.

SEU mitigation techniques can
be implemented at hardware (HW) or
software (SW) levels (Nicolaidis, 2010).
Relevant examples are: HW and/or SW
redundancy, time redundancy, bit inter-
leaving, and error detection and correc-
tion codes (EDAC). In all the cases, the ef-
ficiency of the implemented mitigation
technique must be evaluated. This can
be achieved by fault simulation, fault in-
jection, accelerated radiation testing and
experiments performed in real environ-
ment. From the mentioned evaluation
strategies, fault injection is the most con-
venient considering costs and availabili-
ty issues.

384

SWIFI FAULT INJECTOR FOR HETEROGENEOUS MANY-CORE PROCESSORS

Fault injection is a useful tech-
nique for validating the dependability of
devices or systems (Arlat, 1990). It pro-
vides a way to improve the coverage of
hardware and software testing by intro-
ducing faults in a controlled manner into
system hardware or code paths in order
to observe their behavior in presence of
faults. In the literature, it is possible to find
numerous fault-injection tools based on
hardware and software methods. They
can be classified into: Hardware-Based
Fault Injection, Software-Based Fault In-
jection, Simulation-Based Fault Injection,
Emulation-Based Fault Injection and Hy-
brid Fault Injection (Benso, 2003).

The most used fault injection
technique is Software-Based Fault-Injec-
tion also called Software Implemented
Fault Injection (SWIFI). This technique re-
produces at the software level the errors
that would have been produced when a
fault target the hardware. It involves the
modification of the program running on
the target system to provide the ability
to perform the fault injection. SWIFI is
a convenient fault injection technique
for evaluating applications running on
COTS (Commercial-Of-The-Shelf) devic-
es since it does not require dedicated
complex hardware, gate-level netlist or
RTL models that are described in hard-
ware description languages. Faults can
be injected in accessible memory cells
such as registers and memories that rep-

resent the most sensitive zones of the
chip. The main drawback of SWIFI tech-
niques is their intrusiveness since they
modify the program. This fact may affect
the scheduling of tasks since the timing
involved during the injection can disrupt
the system operation (Ziade, 2012). How-
ever, if timing is not a concern, this type
of fault injection can be considered as
non-intrusive.

Fault injection in processor-based
architectures was a topic largely ad-
dressed by the scientific community to
validate the reliability of critical applica-
tions. In this work, a new software fault
injection approach based on the Code
Emulated Upset (CEU) principles (Velazco,
2000) have been extended to many-core
processors. The CEU approach, based on
interrupt signals; provides error-rate re-
sults close to those obtained in radiation
tests, as demonstrated in (Rezgui, 2001)
(Velazco, 2010). Its applicability to a com-
plex processor as the PowerPC4748, al-
lows validating this device for aeronautical
applications (Peronnard, 2008). It benefits
from the power of modern processors to
inject the fault into a randomly selected
variable of an application while it is under
execution. SEU type faults are simulated
randomly in time and location similarly
to their occurrence in real environments.
The method is applied to three different
scenarios with different multi-processing
modes and programming models.

385

REVISTA PUCE. ISSN: 2528-8156. NÚM.106.
3 DE MAYO DE 2018 - 3 DE NOV. DE 2018, VARGAS, RAMOS, MÉHAUT, VELAZCO, PP. 379-410

State of the art and Related Work

State of the Art
Related literature shows several

works dealing with fault injection tech-
niques. In this section, only SWIFI tech-
niques will be considered because they
are suitable strategies in terms of cost
and simplicity while providing a huge
amount of significant data. For evaluat-

ing the effectiveness of the approach, it
is necessary to take into account char-
acteristics such as intrusiveness, target
area, fault generation and software lev-
el, being the intrusiveness the most im-
portant. Table 1 summarizes the main
features of the most relevant SWIFI ap-
proaches.

Table 1: SWIFI Tools Summary

Fault Injection
tools

Technique Software Level Target area Fault generation Intrusiveness

FIAT Modify kernel O S
Memory, registers,

communica-tions
Fault list High

FTAPE
Memory/ Register

modification
O S Memory, registers Random High

DOCTOR
Fault injection

agent
O S

Memory, registers,

communica-tions

Probabilistic

Past event
High

EXFI Trace exception O S
Memory image,

code, registers
Fault list Low

MAFALDA
Interception

kernel calls
OS Microkernel Random High

BOND
Interposition

agents
OS

Code data sections,

registers, function

call parameters.

Fault list Low

CEU Interruptions Bare-metal Memory, registers Random Low

GOOFI
Pre-runtime

Scan-chain
Bare-metal Memory Random High

JACA
Computational

reflection
OS

Attributes and

methods Java

application

Fault pattern Low

386

SWIFI FAULT INJECTOR FOR HETEROGENEOUS MANY-CORE PROCESSORS

Fault Injection
tools

Technique Software Level Target area Fault generation Intrusiveness

FERRARI System calls OS Memory process Random High

XCEPTION Debugging OS
Memory, data bus,

address registers
Fault list Low

FAUMACHINE
Virtualization

kernel compilation
OS

Memory, disk,

registers, network
Random Low

LFI
Interception

Library modif.
OS Shared libraries Fault profile High

FIES
Dynamic trans-

lation
OS Memory, registers Fault defined XML Low

As Table 1 shows, EXFI, BOND, CEU,
JACA, XCEPTION, FAUMACHINE and FIES
tools have the lower intrusiveness. Con-
sequently, they are suitable for evaluating
critical-embedded applications. Regard-
ing the software level, it is important to
consider that by definition, a SWIFI tech-
nique could not target all the sensitive
zones of a given device. If we also consid-
er the fact that performing fault-injection
on applications under Operating System
(OS) limits even more the target zones, it
is preferred to implement fault injection
at bare-metal level. This is explained be-
cause the at bare-board level it is possible
to access more chip resources, thus better
effectiveness is achieved. Indeed, when
certification of an application running on
critical-embedded system is required, it is
commonly tested in bare-metal (Girbal,
2015).

From the listed techniques, only
CEU and GOOFI work at bare-metal lev-
el. The main difference between them is
that CEU injects faults by means of inter-
ruptions at run-time, while GOOFI injects
faults at compilation-time or by means
of Scan-chain. The main disadvantage
of GOOFI is that it does not target pro-
cessor registers. Additionally, Scan-chain
fault injection works only for devices
compatible with this feature. In addition,
as the objective of this work is to provide
an evaluation approach for multi-core
and many-cores as much general as pos-
sible, CEU was selected as a base fault-in-
jection approach.

Related Work
There are some fault-injection

works for multi/many-core processors,
the most relevant are summarized be-

387

REVISTA PUCE. ISSN: 2528-8156. NÚM.106.
3 DE MAYO DE 2018 - 3 DE NOV. DE 2018, VARGAS, RAMOS, MÉHAUT, VELAZCO, PP. 379-410

low. Lanzaro, Pecchia, Cinque, Cotro-
neo, Barbosa and Silva in 2012 pre-
sented a fault-injection framework for
multi-core processors for dependabil-
ity analysis. Shye, Blomstedt, Moseley,
Janapa Reddi, and Connors in 2009 pro-
posed a fault tolerant technique that
was evaluated by SEU fault-injection on
redundant processes. The faults are in-
jected by means of the Intel tool called
Intel Pin dynamic binary instrumenta-
tion that changes one bit of a randomly
selected instruction. Mansour et al in
2014 presents also a fault-injection tool
at system level as the first steps to ex-
tend the CEU approach to multi-core
processors (Mansour, 2014).

Lastly, in our previous work dif-
ferent variations of CEU-based fault-in-

jection were developed for applications
running on a Quad-core processor.
These variations include a fault-injec-
tor based on fork principle to evaluate
the SEU impact on parallel applications
running on Symmetric Multi-Processing
mode (SMP) (Vargas, 2015) and a fault-in-
jector on bare-board based on inter-pro-
cessor interrupts for application running
on Asymmetric Multiprocessing mode
(AMP) (Vargas, 2014).

The present work shows the ex-
tension of the proposed approaches for
many-core processors where a fault-in-
jector has been developed for distribut-
ed systems based on NoC and inter-pro-
cessor interrupts. The fault injector also
served as monitor application to end the
application in case of timeouts.

Adopted Approach

The proposed fault-injector ap-
proach, for applications running on
multi-core/many-core processors, is
based on CEU principles (Velazco, 2000).
One of the main objectives of CEU ap-
proach is to reproduce the effects of
SEU faults on memory cells accessible
by software means. The fault injection
is produced when an external device
interrupts the target device by an asyn-
chronous interrupt signal. The execution
of the interrupt handler in the target

emulates a bit-flip in a randomly chosen
memory-cell. For mono-core proces-
sors, this type of implementation does
not needs a deep architectural knowl-
edge of the target device. However, for
many-core processors there are several
constraints that have to be overcome to
implement the fault injector due to the
complexity of the device, mainly related
to memory management and inter-core
communications.

388

SWIFI FAULT INJECTOR FOR HETEROGENEOUS MANY-CORE PROCESSORS

Fault Injection Strategy
In the case of multi/many-core

processors, it is possible to benefit of
the multiplicity of cores for using some
of them as fault injector while the oth-

ers run the chosen application. Figure 1
illustrates the proposed fault-injector
approach when one core is used as fault
injector.

Figure 1. Fault Injector based on CEU Principles

For multi/many-core processors,
this strategy considers a master-slave
scheme where the master core per-
forms as fault injector whereas the slave
cores execute the selected application.
The master core initializes the data that
is going to be used by the other cores
and sends a message through an in-
ter-processor interrupt to indicate the
slave cores to start the execution of the
application. While the application is run-
ning on the slave cores, the master core
performs the fault injection. It randomly
selects the target core, the injection in-
stant (in terms of clock cycles), the ad-
dress (global array index) and the bit to
be altered (Vargas et al. 2014,)

To inject a bit-flip in the target,
the following tasks are done:

• Reading the content of the target
memory cell

• Performing an XOR operation with
an appropriate mask value that con-
tains a “1” for the bits that are going
to be flipped and “0” elsewhere.

• Writing the corrupted value to its
original location.

•
When slave cores finish the ex-

ecution of the application, the master
core compares the resulting data with a
set of correct results previously obtained.

The consequences of the fault-in-
jection are classified as follows:

• Silent fault: it occurs when the in-
jected fault does not cause any
consequence in the result of the
program (e.g., typical silent faults are
those affecting data never used or
data already used by the program).

• Erroneous result: the results of the
program are not the expected ones.

389

REVISTA PUCE. ISSN: 2528-8156. NÚM.106.
3 DE MAYO DE 2018 - 3 DE NOV. DE 2018, VARGAS, RAMOS, MÉHAUT, VELAZCO, PP. 379-410

• Exception: the program halts. It is
primarily caused by faults inject-
ed on critical registers. A hang is a
type of exception that crashes the
system.

• Time-out: When the program does
not respond after duration equal to
the worst-case execution time.

Before starting the fault-injection
campaigns, it is neccesary to determine
the number of cycles required to execute
the selected application. It is done in or-
der to know the range of time in which
the fault injection should be performed.
Also, it serves to determine the time-out
value. If the multi/many-core evaluated
processor operates in stand-alone mode,
the monitor functions of the application
to determine time-outs and hangs are ac-
complished by the master core. For the
other cases, when the multi/many-core
processor works as a co-processor, the
monitor functions are accomplished by
the host processor.

The error-rate of an application
(τInj) is derived from the fault injection.
This quantity is defined as the average
number of injected faults needed to pro-
duce an error in the result of the applica-
tion. For obtaining the error-rate errone-
ous results, exceptions and time-outs are
considered.

Many-core Processors
Considerations

Before designing a fault-injector
for many-core processors, it is important
to take into account the complex archi-
tecture of theses devices and some spe-
cific software issues.

Architectural Issues
Typically, the Reduced Instruction

Set Computer (RISC) is implemented on
multi/many-core processors. There is an
instruction-level paralleling implement-
ed in the core architecture to increase
the speed up of processing based on
pipelined. Inside the chip, each core acts
as an independent processor. The OS
manages the internal resources and its
scheduler assigns the processes to the
cores. Reference (Vajda, 2011) details the
architectural issues of both multi-core
and many-core processors. Regarding
the many-core processor, the large in-
crease in the number of cores implies a
considerable evolution in the architec-
ture of the device. The main constraints
are related to the inter-core communica-
tions and the management of memory
resources and I/O devices. Regarding the
inter-core communication mechanisms,
traditionally in a multi-core processor
each core communicates by a common
shared bus with the other cores; how-
ever, in many-core processor the use of
NoC is essential. On the other hand, for

390

SWIFI FAULT INJECTOR FOR HETEROGENEOUS MANY-CORE PROCESSORS

managing efficiently the memory re-
sources some approaches are proposed
such as ring, mesh and crossbar inter-
connections. Figure 2 illustrates a ma-
ny-core processor architecture.

Regarding memory manage-
ment, multi-core and many-core proces-
sors include the use of cache memories
as fast memories to reduce the memory
access time by minimizing the access to
main memory. In fact, its use increases
significantly the performance of the sys-
tem, so several levels of caches are pro-

posed. In addition, these processors use
shared and distributed memory models.
In shared memory models, there is one
common shared memory accessed by
all processors while in distributed mem-
ory, each processor or group of proces-
sors has its own local memory. Typically,
multi-core processors use shared mem-
ory model and many-core processors
use a mixed model. Some manufacturers
group several cores in clusters. Inside
each cluster, they implement a shared
memory.

Figure 2. Many-core processor architecture

391

REVISTA PUCE. ISSN: 2528-8156. NÚM.106.
3 DE MAYO DE 2018 - 3 DE NOV. DE 2018, VARGAS, RAMOS, MÉHAUT, VELAZCO, PP. 379-410

Software Issues
To exploit massive paralleling, the

application developers have to move
from serial to parallel execution model
and choose the appropriate system con-
figuration to achieve maximum concur-
rency and consequently performance
improvement. In addition, some capabil-
ities need to be isolated to guarantee the
dependability of the system. This implies
that the software designer has to take
into account issues such as multi-pro-
cessing mode, programming model and
the access level to hardware resources to
better deploy the application.

Regarding the multi-processing
modes, there are two principal models:
a) Symmetric Multi-Processing (SMP) and
b) Asymmetric Multi-Processing (AMP). A
programming model refers to the man-
ner that the software assigns the applica-
tion tasks to the hardware and the level
of abstraction that the programmer has
from hardware architecture. Finally, mul-
ticore and many-core processors provide
different levels of protection that allow
the software to access to hardware re-
sources and configurations. These levels
are also called privilege modes.

Targeted Zones
The targeted zones could be

cache memories, general purpose and
special function registers belonging to
each processor, as well as shared memo-

ry of the multi/many core device. In order
to perform fault injection in memory, the
variables to be used by the application
are placed in the internal memory of the
device. In this manner, the variables can
be modified at any time by each one of
the processor cores. In the case of cache
memories, since programmers cannot
inject faults directly to them, the fault-in-
jection is performed in the main mem-
ory and corrupted data are retrieved by
cache. Regarding fault injection in pro-
cessor registers, only accessible registers
can be modified. Since master core has
no access to other cores registers, it can
execute an indirect fault injection via an
inter-core interruption to the selected
core, in which the interruption handler
launches a code that targets accessible
registers emulating bit-flips as previous
described. It is important to note that
modifying these registers may cause crit-
ical failures in the program execution.

Limitations of the Strategy
Concerning fault injection in

processor registers, only accessible reg-
isters can be modified. As the fault-in-
jection strategy uses one core as fault
injector, it is reasonable to think about
the intrusiveness of the approach. For
multi-cores having few cores, it is clear
that a significant part of the sensitive
area corresponding to the fault injector
core is not targeted and thus, it should

392

SWIFI FAULT INJECTOR FOR HETEROGENEOUS MANY-CORE PROCESSORS

not be taken into account for the estima-
tion of the error rate. On the other hand,
when working with many-cores having
hundreds of cores, the sensitive area cor-
responding to the fault injector is negli-
gible. In addition, devices implementing

shared memory concentrate most of
the sensitive area outside the processor
cores. Consequently, the presented fault
injection strategy is valid to evaluate the
sensitivity of a given application through
the estimation of its error rate.

Multiple Case Studies

To illustrate the proposed ap-
proach, multiple case studies were con-
sidered:

A. A many-core execution with min-
imal use of NoC services.

B. A many-core execution with in-
tensive use of NoC services.

The evaluation considers the use
of AMP and SMP modes as well as three
types of programming models:

a. Bare-metal: no OS is used, the
programmer uses the Board
Support Package (BSP) functions
provided by the manufacturer to
access hardware resources. There
is no abstraction layer from hard-
ware architecture. All the config-
urations and the distribution of
the tasks must be programmed.
The programmer has the control
of each function.

b. Low Level: no OS is used; howev-
er, there are a set of libraries that
can be used. It provides a little
abstraction from hardware archi-
tecture. The functions and com-
mands used are closely related to
the specific device capabilities on
which the application is imple-
mented.

c. POSIX: is a low-level Application
Programming Interface (API) de-
fined on top of OS. It allows the
control of parallel tasks (threads)
where the programmer must
control the management of
threads. It is independent of the
hardware architecture.

This work proposes the use of
two types of parallel applications: a
CPU-bound and a memory bound. In a
CPU-bound application, the computa-
tion time is the bottleneck in the per-
formance evaluation. On the contrary,

393

REVISTA PUCE. ISSN: 2528-8156. NÚM.106.
3 DE MAYO DE 2018 - 3 DE NOV. DE 2018, VARGAS, RAMOS, MÉHAUT, VELAZCO, PP. 379-410

in a Memory-bound application the ex-
ecution time depends primarily on the
time needed for accessing memory. The
selected CPU-bound application was
the Traveling Salesman Problem (TSP), a
Non-deterministic Polynomial (NP) hard
problem very used for evaluating com-
puting system optimization (Applegate,
2007). This application aims to find the
shortest possible route to visit n cities,
visiting each city exactly once and re-
turning to the departure city. In a formal
way, the problem is represented by a
graph of the cities including the distance
among them, where the cost c(i,j) ≥ 0
represents the distance from city i to j.
The goal is to find a Hamiltonian cycle
with minimum cost for the travel.

On the other hand, the Matrix
Multiplication (MM) was chosen as mem-
ory bound application. The MM is widely
used for solving scientific problems relat-
ed to linear algebra, such as systems of
equations, calculus of structures, deter-
minants among others. Also, the parallel
version of Matrix Multiplication (MM) is
one of the most fundamental problems
in distributed and High Performance
Computing (HPC).

Concerning the target device,
this approach was applied to the MPPA
Developer which is based on the KALRAY
MPPA-256 many-core processor, this de-
vice was selected because:

1. The manufacturing technology is
advanced CMOS 28nm.

2. The architecture and the number
of cores is similar to the many-core
processor ShenWei SW26010 (260
cores). The latter is the base of the
Sunway TaihuLight Supercomput-
er, which was ranked in the first
position of the TOP500 list on No-
vember 2017. More details of the
SW26010 can be found in refer-
ence (Dongarra, 2016).

3. The MPPA many-core was consid-
ered by semiconductor manufac-
turers and the real-time commu-
nity for discussing the challenges
of using many-core processors in
embedded systems. In addition,
the project CAPACITES (Calcul
Parallèle pour Applications Cri-
tiques en Temps et Sûreté) that
gathers French academics and in-
dustrial partners uses this device
to analyze the possibility of using
many-cores for critical real-time
embedded systems.

Target Device
The KALRAY MPPA-256 ma-

ny-core processor is a 64 bit many-core
processor manufactured in TSMC CMOS
28nm technology. The processor oper-
ates between 100 MHz and 600 MHz, for
a typical power ranging between 15 W
and 25 W. Its peak floating point perfor-

394

SWIFI FAULT INJECTOR FOR HETEROGENEOUS MANY-CORE PROCESSORS

mances at 600 MHz are 634 GFLOPS and
316 GFLOPS for single and double-pre-
cision respectively. The second version
of this processor, called Bostan, is con-
sidered in this work. This device is based
on an array of 16 Compute Cluster (CC)
and 2 I/O clusters that are connected to
the 32 nodes of Network-on-Chip (NoC)
with a toroidal 2D topology. The 16 inner

nodes of the NoC are connected to the
CC while the 16 peripheral nodes are
connected to the I/O subsystems. The
NoC is comprised of 2 parallel networks:
the Data NoC (D-NoC) that is optimized
for bulk data transfers while the Control
NoC (C-NoC) is optimized for small mes-
sages at low latency (Kalray, 2016). Figure
3 illustrates an overview of the device.

Figure 3. MPPA-256 many-core processor components

The Multi Purpose Processing
Array(MPPA) is a distributed memory
system. Each Compute Cluster (CC) is
built around a multi-banked local Stat-
ic Memory (SMEM) of 2MB shared by

17 identical Very Long Instruction Word
(VLIW) cores: 16 Processing Engine (PE) +
1 Resource Manager (RM) without cache
coherency. This configuration creates an
interconnection with high bandwidth

395

REVISTA PUCE. ISSN: 2528-8156. NÚM.106.
3 DE MAYO DE 2018 - 3 DE NOV. DE 2018, VARGAS, RAMOS, MÉHAUT, VELAZCO, PP. 379-410

and throughput between PEs. The Pes
are dedicated to execute the applica-
tion code while the RM is in charge of
managing the NoC interfaces by means
of dedicated event lines and interrupts.
Each IO cluster features 2 I/O subsys-
tems. Each I/O subsystem comprises 4
network interfaces and a quad-core of
RMs in a Symmetric Multi-Processing
(SMP) configuration connected to two
main banks of 2 MB and to a 4-lane Inter-
laken controller. One of the I/O subsys-
tem in the IO cluster is connected to a
DDR interface (accessto2GB) and 8 lane
PCIe controller. The other is connected
to a quad 10Gb/s Ethernet controller.

The MPPA integrates 256 PE cores
and 32 RM cores. Both types of cores are
based on the same VLIW 32-bit/64bit
architecture. The VLIW core implements
separate 2-way associative instruction
and data cache memories. There is no
hardware cache coherency mechanism
between cores, nor between data cache
and instruction cache. However, to en-
force memory coherency, several soft-
ware mechanisms are available to pro-
grammers.

Sensitive Zones
The main memory areas of the

many-core processor are covered by er-
ror protection mechanisms except the
instruction and data cache memories of
the VLIW core that are protected by par-

ity. The SMEM of the clusters interleaves
bits of 8 adjacent 64-bit words which
allow localized errors spread as multiple
Single ECC (SECC) errors. They are de-
tected and corrected on the fly. The NoC
router queues (512 of 32bit flits each)
are also protected by ECC. Note that
SECC errors are silently corrected while
Double ECC (DECC) errors are signaled.
On the other hand, registers do not
implement any protection mechanism.
The VLIW core includes General Purpose
Registers (GPRs) and System Function
Registers (SFRs). Outside the processor,
the MPPA comprises different types of
specific registers for controlling DMA,
D-NoC ,C-NoC, cluster power controller,
trace, debug, and the different I/O.

Programming MPPA Issues
In order to program the MPPA

Developer, the application is common-
ly divided into a HOST part and a MPPA
part. However, it is also possible to run
applications only on the MPPA. The
HOST part can use full Linux capabilities
available on the CPU host. For the MPPA
part, each Compute Cluster or IO cluster
can run an executable file. Therefore, the
many-core processor can simultaneous-
ly run as many executable codes as there
are clusters. The execution of a multi-bi-
nary file on the hardware or on the Plat-
form simulator can be accomplished
either by Joint Test Action Group (JTAG)

396

SWIFI FAULT INJECTOR FOR HETEROGENEOUS MANY-CORE PROCESSORS

or PCIe expansion bus (Dinechin, 2016)
(Dinechin, 2016b). The MPPA provides a
great configuration flexibility. It allows
running independent applications per
cluster or to program multi-cluster appli-
cations in a classic master/slave scheme,
where the IO cluster performs as the
master. Communication between the
HOST and the MPPA is achieved using
specific drivers provided by the manu-
facturer. For inter-clusters communica-
tion, it is also provided a library with a set
of functions for data exchanges through
the MPPA Network-on-Chip (NoC). The
main challenges that programmers face
when adapting parallel applications to
this device are the following: (1) the use
of NoC primitives for communication, (2)
the cache coherence must be guaran-
teed by the programmer, and (3) the lim-
ited memory inside the cluster (2MB for
Operating System (OS), code and data).

Case-Study A: Many-Core Execution
with Minimal Use of NoC Services

This case-study aims at evaluat-
ing the sensitivity of the internal com-
puting-cluster resources. To do this, the
many-core processor is configured in
bare-metal where each cluster executes
independently the same application.
Results presented in our previous work
(Vargas, 2017) show that during the ra-
diation test campaigns on the MPPA, no

errors were produced in SMEMs of the
clusters since they implement ECC and
interleaving. Consequently, this work
only considers fault injection in proces-
sors’ registers.

System Configuration
The many-core was configured

in AMP mode and has implemented a
bare-metal application to minimize the
use of libraries. The dynamic response
of the device was evaluated through the
execution of a testing application that
must accomplish the following charac-
teristics: (1) intensive use of the cluster
resources, (2) code and data size maxi-
mum of 2 MB, (3) evenly load distribution
among PEs, (4) enough execution time
to ensure all PEs running in parallel.

In general, there are no shared
resources between compute clusters.
However, the NoC resources are used for
inter-cluster communications when the
IO cluster spawns the executable code
to the compute clusters, and when the
clusters log the results. The code is load-
ed by means of the JTAG in the SMEM of
the IO cluster 0. This cluster then spawns
the same executable into the 16 com-
pute clusters and orders them to start
the execution of the program. Within
each cluster, the RM core wakes-up the
16 PE cores, and each one of them starts
the execution of the application.

397

REVISTA PUCE. ISSN: 2528-8156. NÚM.106.
3 DE MAYO DE 2018 - 3 DE NOV. DE 2018, VARGAS, RAMOS, MÉHAUT, VELAZCO, PP. 379-410

Benchmark Details
The application to be tested with-

in each compute cluster of the device is
an assembler optimized version of a co-
operative 256×256 matrix multiplication.
The matrix multiplication is performed
256 times, and the result C is the summa-
tion of these computations as stated in
(2). The iteration of the matrix operation
is done to guarantee that each cluster
computes enough time so that all the
clusters work in parallel during a consid-
erable time slice. For a 256 matrix size, it
takes around 1M IO cycles to spawn 1
cluster. Since clusters are spawned one
after another, cluster 15 starts execution
around 15M IO cycles after cluster 0.

A, B and C are single precision
floating-point matrices. The size of the
matrix was chosen so that data remain
in the local SMEM memory. Each com-
pute cluster is configured in Asymmetric
Multi-Processing (AMP) mode and the
computational work is distributed evenly
among the processing cores, so each PE
belonging to the cluster computes 1/16
of the cluster result. The synchronization
of the computation is done by events be-
tween the RM and the PE cores. The RM
wakes up the 16 PEs and sends a notifica-
tion to each one to start the computation.

Then, it waits for a notification from each
PE indicating the work was done. Once all
PEs computations have finished, the RM
core compares the result matrix with a
reference result-matrix E, and reports any
mismatch including the associated ad-
dresses and values. Then, the matrix C is
filled up with zeros and the PEs start again
the computation. The program executes
continuously the same algorithm in each
cluster along the test Fault-injector details

This case-study considers one
fault injector per cluster due to each CC
performs the application independent-
ly of the others. This work only consid-
ers Single Event Upset (SEU) emulation
where one SEU per cluster and per run
is injected. The fault injection procedure
is repeated several times in order to ob-
tain enough amount of samples to cal-
culate the injection error-rate τinj. The
fault-injection campaign is devoted to
inject faults in General Purpose Registers
(GPRs) and SFRs of the compute cluster’s
cores (PEs or RM). Since some SFRs are
non writable by software means, only 34
SFRs of 51 SFRs were targeted. Among
the targeted SFRs, the most critical ones
are the 8 registers saved during context
switching: Shadow Program Counter
(SPC), Shadow Program Status (SPS) Re-
turn Address (RA), Compute Status (CS),
Processing Status (PS), Loop Counter
(LC), Loop Start Address (LS) and Loop
Exit Address (LE).

398

SWIFI FAULT INJECTOR FOR HETEROGENEOUS MANY-CORE PROCESSORS

Case-study B: Many-core Execution
with Intensive Use of NoC Services.

This case-study aims at evaluating
the sensitivity of the MPPA when massive
paralleling is used. For that, a CPU-bound
(TSP) and a memory-bound (MM) were
implemented as parallel inter-cluster appli-
cations. The programming model consid-
ers different type of communications. For
the intra-computing cluster, the directives
were POSIX and the inter-cluster commu-
nication was done by NoC services. Due to
certain constraints, a Low-level configura-
tion was used in the IO cluster. The dynam-
ic response of the TSP and the MM were
only evaluated through fault injection in

processors registers, since the SMEM of the
MPPA many-core implement effective pro-
tection mechanisms.

System Configuration
The many-core processor was

configured in a typical master/slave
scheme for running parallel multi-cluster
applications. The master runs on the IO
cluster while the slaves run on the Com-
pute Cluster (CC). In this case study, the
application was configured without a
code running on the HOST . The MPPA
part was loaded through the JTAG port
to the IO-DDR0. Figure 4 shows the boot-
ing process for this type of configuration.

Figure 4. MPPA booting for a POSIX application model

399

REVISTA PUCE. ISSN: 2528-8156. NÚM.106.
3 DE MAYO DE 2018 - 3 DE NOV. DE 2018, VARGAS, RAMOS, MÉHAUT, VELAZCO, PP. 379-410

For this scheme, 3 RM cores of the
IO-DDR0 were configured:
• The RM1 is the master of the appli-

cation.
• The RM3 is the fault injector.
• The RM0 coordinates the actions

between the application and the
fault injector. Also, it is in charge
of configuring all the inter-cluster
communication.

At present, the Real-Time Execu-
tive for Multiprocessor Systems (RTEMS)

OS which runs on IOs is only capable of
using one RM. For this reason, the Low-
level programming model was selected
for the IO cluster. The IO was configured
in bare-metal without OS, including
the Virtual Board Supporting Package
(V-BSP) and LibNOC libraries. Figure 5 al-
lows a better understanding of the soft-
ware configuration details. It illustrates
the several abstraction layers included in
the software stack of the MPPA ACCESS-
CORE SDK.

Figure 5 Kalray software stack (Kalray,2016)

These libraries can co-exist in-
dependently, and the user can mix and
match the libraries he wish to use (Kalray,
2016). On the other hand, the intra-clus-

ter application was configured with the
POSIX model. The main process runs on
the RM1 and is responsible to spawn the
sub-processes from the IO to the target

400

SWIFI FAULT INJECTOR FOR HETEROGENEOUS MANY-CORE PROCESSORS

CCs. Each sub-process is a multi-thread
program based on POSIX. The CCs were
configured for using the Node OS, an
OS POSIX standard. The Node OS imple-
ments an asymmetric multi-processing
architecture where the RM performs the
kernel routines and NoC interface ser-
vices, while the PEs run one user thread
per PE. All the inter-cluster communica-
tions are done through the NoC using
the MPPA inter process communication
(MPPA IPC). This library contains the rout-
ing functions, an API for the power-on
and spawning of CCs and the commu-
nication primitives: the classic POSIX
IPC and some specific primitives for the

MPPA many-core (Kalray, 2016). Since
there is no shared memory between
clusters in the MPPA architecture, the im-
plementation of an inter-cluster applica-
tion requires distributed algorithms.

Benchmark details
The implementation of both ap-

plications allows configuring the num-
ber of CCs from one to four as well as the
problem size. Table 2 illustrates the exe-
cution time of different possible config-
urations for the TSP application. The time
in seconds is done for a configuration of
the device with an operating frequency
of 400 MHz.

Table 2: Standard execution time for different configurations of TSP on the MPPA

Nb cities 1 cluster 2 clusters 3 clusters 4 clusters

[Gcycles] [s] [Gcycles] [s] [Gcycles] [s] [Gcycles] [s]

16 30.8 77.0 16.2 40.5 11.3 28.3 8.6 21.5

17 188.8 472.0 102.8 257.0 71.2 178.0 58.1 145.2

18 521.9 1304.2 260.3 650.8 188.2 470.5 159.8 399.5

For performing both applica-
tions, this case-study considers 4 CCs
as slaves of the RM1 of the IO cluster.
Thus, 5 RMs and 64 PEs are involved
on the application itself plus the RM0
that starts, monitors, and manages the
messages received by the NoC. Before
starting the distributed application, the
RM0 initializes the primitives needed for

the communication, then wakes up the
other RMs, the master of the application
and the fault injector on the IO cluster.
Once the RM1 is started, it performs the
run_application function. It is important
to note that, if any cluster does not finish
its job in the normal execution time,
the RM0 logs an timeout and ends the
application. The TSP was configured to

401

REVISTA PUCE. ISSN: 2528-8156. NÚM.106.
3 DE MAYO DE 2018 - 3 DE NOV. DE 2018, VARGAS, RAMOS, MÉHAUT, VELAZCO, PP. 379-410

solve a 17 cities problem in order to have
enough processing time to observe er-
rors within a reasonable overall simula-
tion time.

Regarding the code performed
by the slaves, it corresponds to a
multi-threading TSP version. Each cluster
performs the slave code almost inde-
pendently of the others. It has its own
minimum distance and path variables.
The only moment when they interact
with each other is when a new min-
imum distance is found by a CC. The
latter broadcasts this information to the
master and other slaves so that each one
of them updates its related variables.

On the other hand, the MM is
practically the same cooperative 256 ×
256 matrix multiplication described in
the case-study A. The main difference
is that the computation is iterated 8192
times. Each slave computes 1/4 of the
result. The main process of each CC cre-
ates 16 POSIX threads, one for each PE.
Therefore, each PE calculates 1/64 of the
result by executing the same assembler
optimized version of the cooperative
MM used in the previous case-study.

Fault-injector Details
This case-study implements one

core of the device as fault injector, be-
ing the RM3 core of the IO cluster 0 that
performs this function. Fault-injection
campaigns target only processor regis-

ters as stated in the previous case-study.
In order to interrupt the targeted core,
it is used the portal primitive. Thus, the
configuration of one portal per cluster
(portal_fi) is needed for fault-injection
purposes. In the case of the master, the
RM0 is in charge of its configuration.

To emulate a bit-flip in the select-
ed register, the fault injector must inter-
rupt the selected core. For achieving this
goal, at the random instant, the fault-in-
jector writes the fault-injection variables,
random PE, random address and ran-
dom bit in the portal_fi of the CC that
contains the selected core. This process
causes an interruption of the RM which
immediately assigns the execution of
the interruption handler to any one of
the PEs. The assigned PE reads the infor-
mation in the portal_fi, that contains the
selected core, register and bit to change.
If it is the targeted core, it changes the
bit in the selected register. Otherwise, it
sends an inter-processor interrupt to the
corresponding PE which performs the
bit-flip emulation.

The fault injection campaigns
of both applications are devoted to in-
ject faults in GPRs and 15 SFRs of the
PEs belonging to the compute clusters.
The targeted SFRs are: (1) the 8 registers
saved during context switching: SPC, SPS
RA, CS, PS , LC, LS and LE, (2) the 6 event
registers, and the Performance Monitor
Control (PMC) register.

402

SWIFI FAULT INJECTOR FOR HETEROGENEOUS MANY-CORE PROCESSORS

The other SFR could not be tar-
geted due to the following reasons: (1)
5 SFRs are hardwired and 2 are unused
by the current Bostan version of the
MPPA processor, (2) the 4 performance
monitor registers cannot be modified
by software, (3) the 5 registers used by

the debugger can only be accessed in
debug mode, (4) the exception vector is
non-writable by the user, and (5) the oth-
er SFR are managed by the OS so when
the user changes any of them, the OS
produces always an exception.

Experimental Results

Experimental Evaluation by Fault
Injection Case A

In these experiments, the SEU
faults were injected at a random instant
within the nominal duration of the ex-
ecuted program which was around
5.3×108 clock cycles. The fault-injection

results of this case study were already
presented in our previous work (Vargas,
2017). Retrieving this information, Table 3
summarizes the fault injection campaign
where 94316 faults were injected in the
GPRs and accessible SFRs.

Table 3 : Results of the fault-injection campaigns for MM-AMP-MPPA scenario

Targeted Registers Silent Faults Erroneous results Timeouts Exceptions

GPRs 36472 16387 6678 1996

SFRs 22745 2034 6365 1639

TOTAL 59217 18421 13043 3635

From these results, it was calculat-
ed the application error rate applying (3),
and considering as errors the erroneous
results, timeouts and exceptions.

This result shows that 37.21% of
the injected SEUs in the accessible regis-
ters cause errors in the application. Since
registers have no protection mecha-
nisms, this campaign is very useful to
emulate the behavior of the application
in presence of SEUs.

403

REVISTA PUCE. ISSN: 2528-8156. NÚM.106.
3 DE MAYO DE 2018 - 3 DE NOV. DE 2018, VARGAS, RAMOS, MÉHAUT, VELAZCO, PP. 379-410

Experimental evaluation for case B
The following experiments only

consider the emulation of one SEU per
execution, so that one SEU is injected in
the targeted register belonging to one of
the 64 PE cores used by the application.
The fault is generated at a random in-
stant within the nominal duration of the
application. In order to avoid the prop-
agation of errors to the next execution,

the HOST resets the platform and reloads
the code to the MPPA processor after
each run. Hence, the random variables
required by the fault-injector are pro-
vided by the HOST, being the random
instant, core, register and bit additional
arguments of the main function. Table 4
provides details about the two fault in-
jection campaigns.

Table 4: Fault Injection Campaign details for case B

Application Standard execution time Runs per campaign

[Gcycles] [s]

MM 4.55 11.4 72497

TSP 58.06 145.2 8417

Table 5 shows a general overview
of the fault-injection campaigns on the
TSP and MM applications. These results
confirm the intrinsic fault-tolerant capa-
bility of the TSP application. From these
results, the error-rates of both applica-
tions were calculated by using equation

(3), being 2.61% for the TSP and 14.38 %
for th MM. The erroneous results, time-
outs and exceptions were considered as
errors. Figure 6 illustrates the details of
the error consequences in both applica-
tion during fault-injection campaigns.

Table 5: Results of the fault-injection campaigns on case B

Application Silent Faults Erroneous results Timeouts Exceptions

MM 62071 5215 112 5099

TSP 8197 2 21 197

404

SWIFI FAULT INJECTOR FOR HETEROGENEOUS MANY-CORE PROCESSORS

Figure 6. Fault-injection consequences on MPPA when targeting registers

Three types of exceptions were
produced: (1) the PE targeted by the
fault-injector was completely stuck and
does not respond anymore to the JTAG
requests “core stuck”, (2) the bit-flip
caused the core tried to access a mem-
ory not allocated producing a “segmen-
tation fault”, and (3) the MPPA device
stopped its execution and produced an
exit of the process “device exit”.

As expected, during the fault-in-
jection campaigns, it was observed that
the critical registers are application de-
pendent. For instance, in the case of TSP
the most critical SFRs registers were: the
Shadow Program Counter, the Shadow
Program Status and the Return Address.
Also, some of the errors were produced
by bit-flips in Processing Status and
Loop Counter. Concerning the GPRs, the

405

REVISTA PUCE. ISSN: 2528-8156. NÚM.106.
3 DE MAYO DE 2018 - 3 DE NOV. DE 2018, VARGAS, RAMOS, MÉHAUT, VELAZCO, PP. 379-410

most critical was the GPR13 followed by
GPR43, GPR54 and GPR60. On the other
hand, in the MM application, the most
critical SFRs were: the Shadow Program
Counter, the Shadow Program Status,
the Return Address, the Loop Start Ad-
dress and the LE. Regarding the GPRs:
the most critical was the GPR13 followed
by GPR10, GPR16, GPR34, GPR35, GPR39,
GPR42, and GPR50. Concerning the type
of errors, the most critical one is the er-
roneous result since this error is ignored
by the application which considers it as a
valid result. The timeouts and exceptions
are not so critical since they are detect-
ed and the application/system is able to
manage them. For instance, this case-
study implements an application with
a timeout principle, so if the execution
time of the application is greater than
the standard execution time, the appli-
cation is finished. In addition, the system
exceptions are managed using traps in
the OS and/or by a monitor in the HOST
that kills the process in the MPPA if the
application does not respond.

Discussion of the overall results
In this work, three scenarios were

evaluated:
• A parallel MM running independent-

ly on each computing cluster
congured on a bare-metal system
with shared memory. Two scenarios
were proposed: cache memories en-

abled and cache memories disabled.
• A MM running on a distributed sys-

tem using a master/slave scheme,
where the master runs on the IO
Cluster, while each one of the 4
slaves runs in a Compute Cluster.
Each slave is an AMP system pro-
grammed with POSIX which com-
putes a part of the total result.

• A TSP running on a distributed sys-
tem using a master/slave scheme,
where the master runs on the IO
Cluster, while each one of the 4
slaves runs in a Compute Cluster.
Each slave is an AMP system pro-
grammed with POSIX which com-
putes a part of the total result.

Regarding fault-injection experi-
ments, the used and targeted resources
per scenario are summarized in Table
6. Unfortunately, it was not possible to
target all the resources used by each
scenario for the following reasons: (1)
some registers are not-writable by soft-
ware means, (2) the RM interrupt routine
should not be modified by the program-
mer to guarantee a correct operation
of NoC services. On distributed applica-
tions, the communication between clus-
ters is achieved by the use of NoC librar-
ies provided by the manufacturer which
use interrupts. Thus, it is not possible to
overwrite the interrupt routine to pro-
gram inter-processor interrupts which
allow injecting faults in the RM.

406

SWIFI FAULT INJECTOR FOR HETEROGENEOUS MANY-CORE PROCESSORS

Table 6: Summary of the different fault-injection scenarios evaluated on the MPPA

Scenario Registers Targeted

per core

Cores Targeted per CC cluster Resources used by the

application

Resources Targeted

MM-Bareboard 64 GPRs + 34 SFRs RM + 16 PEs CCs CCs

MM-Posix 64 GPRs + 15 SFRs 16 PEs IO + CCs + NoC CCs

TSP-Posix 64 GPRs + 15 SFRs 16 PEs IO + CCs + NoC CCs

On systems configured in
bare-metal, it is possible to target more
registers by software means since there
are no restrictions caused by the use of

an OS. A distribution of the consequenc-
es of fault-injection campaigns on the
tested applications when targeting reg-
isters is shown in Figure 7.

Figure 7. Distribution of fault-injection consequences on MPPA for different scenarios

407

REVISTA PUCE. ISSN: 2528-8156. NÚM.106.
3 DE MAYO DE 2018 - 3 DE NOV. DE 2018, VARGAS, RAMOS, MÉHAUT, VELAZCO, PP. 379-410

Conclusions

The fault-injector approach has
been proved to be useful to predict ap-
plication error-rate due to its reasonably
closeness to the error-rate measured in
radiation experiments (Vargas, 2016).
Consequently, in spite of the hardware
complexity of the many-core processor,
the mentioned work support the rele-
vance of the use of the CEU approach
to estimate the error-rate of applications
implemented in such devices.

In spite of the limitations of the
approach concerning targeted zones,
the evaluation through this method
gives a clear idea of the SEU sensitivity
of the application. From the obtained re-
sults, MM-Posix scenario seems to be less
sensitive than MM-Bareboard. However,

it can not be concluded based only on
the results obtained from the fault-in-
jection campaigns due to the consider-
able underestimation of errors in POSIX
scenarios. Note that IO clusters and NoC
resources used in POSIX cannot be tar-
geted by fault-injection means. Conse-
quently, further radiation experiments
are needed: (1) to evaluate at what ex-
tent this fault injection limitation affects
the results, considering that RMs are in
charge of manage the OS, and (2) to pro-
vide a fair comparison of both scenarios.
Furthermore, to validate the approach,
it is necessary to apply the approach to
other many-core processors and system
configurations and confront the results
to radiation experiments.

Acknowledgments

This work was supported in a part
by the Universidad de las Fuerzas Arma-
das ESPE, by the Secretaría de Educación
Superior, Ciencia, Tecnología e Innovación
del Ecuador (SENESCYT) STIC-AmSud -
EnergySFE project PIC-16-ESPE-STIC-001

and by the French authorities through
the “Investissements d’Avenir” program
(CAPACITES project). Authors thank to
Stéphane Gailhard from the Societé Kalray
for his valuable contribution to solve the
MPPA programming issues

408

SWIFI FAULT INJECTOR FOR HETEROGENEOUS MANY-CORE PROCESSORS

References

Applegate, D. L., Bixby, R.E., Chvatal,V. and
Cook, W.J.(2007) The Traveling
Salesman Problem: A Computa-
tional Study, pages 49-53. Princ-
eton University Press, Princeton,
USA, September.

Arlat, J.et al. (1990) “Fault Injection for De-
pendability Validation: A meth-
odology and Some Applications,”
IEEE Trans. On Soft. Eng. Vol. 16, No
2, pp. 166-182.

De Dinechin, B. D., De Massas, P. G., Lager,
G., Léger, C., Orgogozo, B. Reybert,
J., and Strudel, T., (2013).“A distrib-
uted run-time environment for
the kalray MPPA-256 integrated
manycore processor,” Procedia
Computer Science, vol. 18, pp.
1654 – 1663, 2013 International
Conference on Computational
Science.

De Dinechin, B.D., Ayrignac, R., Beau-
camps, P.E., Couvert, P. Ganne, B.,
De Massas, P.G., Jacquet, F. Jones,
S., Chaisemartin, N.M., Riss, F.,
and Strudel, T.(2013) “A clustered
manycore processor architecture
for embedded and accelerated
applications,” in 2013 IEEE High
Performance Extreme Computing
Conference (HPEC), Sept. , pp. 1–6.

Baumann, R. (2005) “Soft Errors in Ad-
vanced Computer Systems”, IEEE

Design and Test of Computers, vol
22, n° 3, pp. 258-266.

Benso, A. and Prinetto, P. (2003) Fault
Injection techniques and tools
for embedded systems reliability
evaluation, USA: Kluwer Academ-
ic.

Dongarra, J. (2016) Report on the Sun-
way TaihuLight System, June.

Ferrel, T. and Ferrel, D. (2014) “RTCA DO-
178B/EUROCAE ED12B.” Digital
Avionics Handbook, Third Edition,
195206.

Girbal, S., Pérez, D. G., Le Rhun, J., Faugère,
M., Pagetti, C. and Durrieu, G.
(2015) “A complete toolchain for
an interference-free deployment
of avionic applications on multi-
core systems,” 2015. IEEE/AIAA
34th Digital Avionics Systems Con-
ference (DASC), Prague, pp. 7A2-1-
7A2-14.

Johnston, A. H. (2000)“Scaling and
Technology Issues for Soft Error
Rates”, Proceedings of 4th Annual
Research Conference on Reliability,
Stanford University, October.

Kalray (2015) “MPPA ACCESSCORE V1.4
Introductory Manual,”. V. Vargas, P.
Ramos, V. Ray, C. Jalier, R. Stevens,
B. Dupont de Dinechin, M. Baylac,
F. Villa, S. Rey, N. E. Zergainoh, J.
F. Méhaut, and R. Velazco, “Radi-

409

REVISTA PUCE. ISSN: 2528-8156. NÚM.106.
3 DE MAYO DE 2018 - 3 DE NOV. DE 2018, VARGAS, RAMOS, MÉHAUT, VELAZCO, PP. 379-410

ation Experiments on a 28nm
Single-Chip Many-core Processor
and SEU error-rate prediction,,”
IEEE Trans. Nucl. Sci., vol. 99, pp. 1
– 8, Dec. 2016.

Kalray(2016) “MPPA-256 Bostan Cluster
and I/O Subsystem Architecture”.

Lanzaro, A., Pecchia, A., Cinque, M.,.Cotro-
neo, D.,Barbosa, R. and Silva, N. A.
(2012) Preliminary Fault Injection
Framework for Evaluating Mul-
ticore Systems, pages 106-116.
Springer Berlin Heidelberg, Berlin,
Heidelberg, September.

Mansour, W., Ramos, P., Ayoubi, R. and
Velazco R. (2014) “SEU fault-in-
jection at system level: method,
tools and preliminary results”.
15th Latin American Test Workshop
– LATW, pp. 1-5.

Nicolaidis, M.(2010) “Soft Errors in mod-
ern electronic systems”, SPRINGER
Ed., ISBN 978-1-4419-6992-7.

Ramos, P.(2017) “Evaluation of the SEE
sensitivity and methodology for
error rate prediction of applica-
tions implemented in Multi-core
and Many-core processors.” [On-
line]. Available: http://tima.univ-
grenoble-alpes.fr/tima/en/medi-
atheque/ PhDthesisresult_id452.
html, France, ISBN: 978-2-11-
129226-0, April.

Ramos, P., Vargas, V., Baylac, M., Villa, F.,
Rey, S., Clemente, J.A., Zergainoh,

N.E. Méhaut, J.F., and Velazco,
R.(2016) “Evaluating the SEE sen-
sitivity of a 45nm SOI Multi-core
Processor due to 14 MeV Neu-
trons,” IEEE Trans. Nucl. Sci., vol. 63,
pp. 2193 – 2200, Aug.

Peronnard, P., Ecoffet, R., Pignol, M., Bellin,
D. and Velazco, R. (2008) “Predic-
ting the SEU Error Rate through
Fault Injection for a Complex Mi-
croprocessor,” in Proc. 2008 IEEE In-
ternational Symposium on Indus-
trial Electronics, September, pp.
2288–2292.

Velazco, R., Foucard, G. and Peronnard,
P.(2010) “Combining Results of
Accelerated Radiation Tests and
Fault Injections to Predict the
Error Rate of an Application Im-
plemented in SRAM-Based FP-
GAs,” IEEE Trans. Nucl. Sci., vol. 57,
pp. 3500–3505, December.

Velazco, R., Rezgui, S. and Ecoffet,
R.(2000) “Predicting Error Rate for
Microprocessor-Based Digital Ar-
chitectures through C.E.U. (Code
Emulating Upsets) Injection,”, IEEE
Trans. Nucl. Sci., vol. 47, pp. 2405–
2411, December.

Rezgui, S., Velazco, R., Ecoffet, R., Ro-
driguez, S. and Mingo,J.(2001)
“Estimating Error Rates in Pro-
cessor-Based Architectures,” IEEE
Trans. Nucl. Sci., vol. 48, pp. 1680–
1687, December.

410

SWIFI FAULT INJECTOR FOR HETEROGENEOUS MANY-CORE PROCESSORS

Shye, A., Blomstedt, J., Moseley, T., Jana-
pa Reddi, V., and Connors, D. A.
(2009). PLR: A Software Approach
to Transient Fault Tolerance for
Multicore Architectures. IEEE
Trans. On Dependable And Secure
Computing, 6(2):135-148, April.

Vajda, A.(2011) Multi-core and many-co-
re processor architectures. In Pro-
gramming Many-Core Chips, pa-
ges 9-43. Springer.

Vargas, V.(2017) “Software approach to
improve the reliability of para-
llel applications implemented
on multi-core and many-core
processors” [Online]. http://tima.
univ-grenoble-alpes.fr/tima/
fr/mediatheque/PhDthesisre-
sult_id453.html Available: France,
ISBN: 978-2-11-129227-7, April.

Vargas, V., Ramos, P., Ray, V., Jalier, C., Ste-
vens, R, Dinechin, B. D. D., Baylac,
M., Villa, F., Rey, S., Zergainoh, N. E.,
Méhaut, J.F., and Velazco, R.(2017)
“Radiation experiments on a 28
nm single-chip many-core pro-
cessor and seu error-rate predic-
tion,” IEEE Trans. Nucl. Sci., vol. 64,
pp. 483–490, January.

V. Vargas, P. Ramos, W. Mansour, R. Ve-
lazco, N. Zergainoh, and J. Me-
haut,(2014) “Preliminary results of
SEU fault injection on multicore
processors in AMP mode,” in Proc.
IEEE 20th International On-Line

Testing Symposium (IOLTS), pp.
194–197, September.

Ziade, H., Ayobi, R. and Velazco, R. (2004)
“A Survey on Fault Injection Te-
chniques”, The International Arab
Journal of Information Technology,
Vol 1, no 2, July, pp. 1-6.

	SWIFI FAULT INJECTOR FOR HETEROGENEOUS MANY-CORE PROCESSORS
	INYECTOR DE FALLAS SWIFI PARA PROCESADORES HETEROGÉNEOS MANY-CORE
	Vanessa Vargas, Pablo Ramos, Jean-François Méhaut, Raoul Velazco

	_GoBack
	_Ref503770009
	_Ref503617193
	_Ref503617234
	_Ref503617403
	_Ref503767032
	_Ref503766787
	_Ref503766495
	_Ref503767886
	_Ref503768571
	_Ref503769093
	_Ref503769349
	_Ref503769753
	_Ref503769828

