Determinación de la resistencia no drenada al corte de suelos orgánicos, mediante el uso del cono de penetración estático y el dilatómetro plano de Marchetti

  • Jorge Albuja Pontificia Universidad Católica del Ecuador, Facultad de Ingeniería, Quito, Ecuador

Resumen

En los suelos orgánicos y turbas, la determinación de la resistencia al corte no drenada es mediante los mismos métodos que en los suelos minerales, sin embargo, no todas las metodologías son aplicables. Los suelos orgánicos presentan diferentes grados de descomposición, tipos de fibras, e incluso presencia de gas por los procesos de descomposición. Por esta razón, se ha realizado una comparación de la determinación de este parámetro en suelos orgánicos presentes en el sur de la Ciudad de Quito, mediante ensayos in situ como el Cono de Penetración Estático, el Dilatómetro de Marchetti y el Ensayo de Penetración Estándar, así como con ensayos de laboratorio. La investigación concluye con un cuadro comparativo de la resistencia al corte obtenida con cada ensayo.

Citas

Ajlouni, M. A. (2000). Geotechnical properties of peat and related engineering problems. Ph.D. Thesis. Univ. of Illinois at Urbana– Champaign.

Alvarado, A. (1996). Evolución geológica cuaternaria y paleosismicidad de la Cuenca de Quito (Ecuador). Escuela Politécnica Nacional.

ASTM D1586-11. (2008). Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils. ASTM Standard Test Method, D1586–08a, 1–9. https:// doi.org/10.1520/D1586-11.2

ASTM D3441 − 16. (2014). Standard Test Method for Mechanical Cone Penetration Tests of Soil. https://doi. org/10.1520/D3441

ASTM D6635 − 15. (2016). Standard Test Method for Performing the Flat Plate Dilatometer, 1–16. https:// doi.org/10.1520/D6635-15.2

Avilés, L. (2013). Caracterización Geológica - Geotectónica del sur de la ciudad de Quito, 190. Retrieved from http://www.dspace.uce. edu.ec/handle/25000/2752

Balachowski, L., Kozak, P., & Kurek, N. (2008). Intercorrelation between CPTU-DMT tests for sands on the Baltic coast Intercorrelation between on the Baltic coast tests for, (September).

Boylan, Noel; Long, M. (Michael. (2012). In situ testing of peat – a review and update on recent developments Author ( s ) version information. Geotechnical Engineering Journal of the SEAGS & AGSSEA.

Burwash, A. L., & Wiesner, W. R. (1984). CLASSIFICATION OF PEATS FOR GEOTECHNICAL ENGINEERING PURPOSES. (pp. 979–998). Retrieved from https://www.scopus.com/inward/record. uri?eid=2-s2.0-0021658317&partnerID=40&md5=aa83703d0ab974103b62df48630fae80

Colleselli, F., Cortellazzo, G., & Cola, S. (2000). Laboratory testing of Italian peaty soils. In ASTM Special Technical Publication (pp. 226–240). Retrieved from https:// www.scopus.com/inward/record. uri?eid=2-s2.0-0033903376&partnerID=40&md5=660e3d - 9588462dd703a18669efe1b451

Cuvi, N. (2017). Las ciudades como mosaicos bioculturales: el caso del Centro Histórico de Quito Las ciudades como mosaicos bioculturales : el caso del centro histórico de Quito, (May)

Davis, J. (1946). The peat deposits of Florida, their occurrence , development and uses (FGS : Bulletin 30). The Florida Geological Survey, 1–257

Dhowian, A. W., & Edil, T. B. (1980). Consolidation Behavior of Peats. Geotechnical Testing Journal, 3(3), 105– 114. https://doi.org/10.1520/ GTJ10881J

Edil, T. B., Fox, P. J., & Lan, L.-T. (1991). Endof-primary consolidation of peat. In Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering, May 26, 1991 - May 30 (Vol. 1, pp. 65–68). Univ of Wisconsin-Madison, Madison, United States: Publ by A.A. Balkema

Elsayed, A. (2006). Dilatometer & cone penetration tests on peat soil in Carver, Massachusetts. Civil Engineering Practice, 21(2).

Elsayed, A. A. (2003). No Title. The characteristics and engineering properties of peat in bogs. University of Massachusetts Lowell

Haan, E. Den, & Kruse, G. (2007). Characterisation and engineering properties of Dutch peats. … of Characterisation and Engineering Properties of …. Retrieved from http://scholar. google.com/scholar?hl=en&btnG=Search&q=intitle:Characterisation+and+engineering+properties+of+Dutch+peats#0

Hayashi, H., Nishimoto, S., & Yamanashi, T. (2016). Applicability of settlement prediction method to peaty ground. Soils and Foundations. https://doi.org/10.1016/j.sandf.2016.01.012

Huat, B. B. K. (2014). Geotechnics of organic soils and peat. (A. Prasad author., A. Asadi author., & S. Kazemian author., Eds.). Boca Raton: CRC Press.

Jarrett, P. M. (1983). Testing of Peats and Organic Soils. https://doi. org/10.1520/STP820-EB

Johari, N. N., Bakar, I., & Aziz, M. H. A. (2015). Consolidation Parameters of Reconstituted Peat Soil: Oedometer Testing. Applied Mechanics and Materials, 773–774, 1466–1470. https://doi.org/10.4028/ www.scientific.net/AMM.773- 774.1466

Joint Nature Conservation Committee. (2011). Towards an assessment of the state of UK Peatlands. JNCC report

Kamao, S. (2016). Creep and relaxation behavior of highly organic soil. International Journal of GEOMATE, 11(3), 2506–2511. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958225892&partnerID=40&md5=5a420044bdd107746f94cad381897293

Landva, A., & La Rochelle, P. (1983). Compressibility and Shear Characteristics of Radforth Peats. Testing of Peats and Organic Soils, 157- 157–35. https://doi.org/10.1520/ STP37341S

Landva, A. O., Korpijaakko, E. O., & Pheeney, P. E. (1983). GEOTECHNICAL CLASSIFICATION OF PEATS AND ORGANIC SOILS. In ASTM Special Technical Publication

Landva, A. O., & Pheeney, P. E. (1980). PEAT FABRIC AND STRUCTURE. Canadian Geotechnical Journal, 17(3), 416–435

Ludeña, P. (2007). Variabilidad espacial del ensayo de penetración estándar en los sedimentos volcánicos del subsuelo del centro – norte de la ciudad de Quito

Lunne, T., Robertson, P., & Powell, J. (1997). Cone Penetration Testing in geotechnical practice

Marchetti, S. (1980). In situ tests by flat dilatometer. Journal of the Geotechnical Engineering Division, ASCE, 106(GT3, Proc.).

Marchetti, S., & Crapps, D. (1981). Flat Dilatometer Manual.

Mayne, P. W., Coop, M. R., Springman, S. M., Huang, A.-B., & Zornberg, J. G. (2009). Geomaterial behavior and testing. In Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering (Vol. 4). https://doi.org/10.3233/978-1- 60750-031-5-2777

Mesri, G., & Ajlouni, M. (2007). Engineering properties of fibrous peats. Journal of Geotechnical and Geoenvironmental Engineering, 133(7), 850–866. https:// doi.org/10.1061/(ASCE)1090- 0241(2007)133:7(850)

Meyer, Z., Coufal, R., Kowalów, M., & Szczygielski, T. (2011). Peat consolidation - new approach. Archives of Civil Engineering, LVII(2), 173. https://doi.org/http://dx.doi.org/10.2478/v.10169-011-0013-5

Mlynarek, Z., Wierzbicki, J., & Bogucki, M. (2015). Geotechnical characterization of peat and gyttja by means of different in-situ tests. In 16th European Conference on Soil Mechanics and Geotechnical Engineering, ECSMGE 2015, September 13, 2015 - September 17 (Vol. 6, pp. 3097–3102). Pozna University of Life Sciences, Pozna, PolandAdam Mickiewicz University, Pozna, PolandILF Consulting Engineers, Poland: ICE Publishing.

Nassaji, F. (2011). SPT Capability to Estimate Undrained Shear Strength of Fine- Grained Soils of. Electronic Journal of Geotechnical Engineering, 16(January).

Nichol, D. (1998a). Construction Over Peat in Greater Vancouver, British Columbia. Proceedings of the Institution of Civil Engineers - Municipal Engineer, 127(3), 109– 119. https://doi.org/10.1680/ imuen.1998.30986

Nichol, D. (1998b). Construction Over Peat in Greater Vancouver, British Columbia. Proceedings of the Institution of Civil Engineers - Municipal Engineer, 127(3), 109– 119. https://doi.org/10.1680/ imuen.1998.30986

O’Kelly, B. C. (2015). Atterberg limits are not appropriate for peat soils. Geotechnical Research, 2(3), 123– 134. https://doi.org/10.1680/jgere.15.00007

Parish, F., Sirin, A., Charman, D., Joosten, H., Minayeva, T., Silvius, M., & Stringer, L. (2008). Assessment on Peatlands, Biodiversity and Climate Change: Main Report. https://doi.org/10.1017/ CBO9781107415324.004

Peñafiel, L. (2008). Geología y Análisis del Recurso Hídrico subterráneo de la subcuenca del sur de Quito. Escuela Politécnica Nacional.

Radforth, N. W., & Radforth, J. R. (1965). The significance of density as a physical property in peat deposits, 2(3), 81–88.

Rahgozar, M. A., & Saberian, M. (2016). Geotechnical properties of peat soil stabilised with shredded waste tyre chips. Mires and Peat, 18, 1–12. https://doi.org/10.19189/ MaP.2015.OMB.205 1

Robertson, P. K., Campanella, R. G., Gillespie, D., & Greig, J. (1986). USE OF PIEZOMETER CONE DATA

Santander, P. (2013). Informe Técnico de Inspección Provincial Pichincha - Quito Sector Turubamba.pdf.

Skempton, A. W., & Petley, D. J. (1970). Ignition Loss and other Properties of Peats and Clays from Avonmouth, King’s Lynn and Cranberry Moss. Géotechnique, 20(4), 343– 356. https://doi.org/10.1680/ geot.1970.20.4.343

Soper, E. K., & Osbon, C. C. (1922). The occurrence and uses of peat in the United States. Bulletin. Retrieved from http://pubs.er.usgs.gov/publication/b728

Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil Mechanics in Engineering Practice.

Villagómez, D. (2014). Evolución Geológica Plio-cuaternaria del Valle Interandino Central en Ecuador (zona de Quito-Guayllabamba-San..., (May).

Wong, L. S. (2014). Unconfined compressive strength performance of cement stabilized peat with rice husk ash as a pozzolan. In Structural, Environmental (Vol. 567, pp. 545–550). Civil Engineering Department, College of Engineering, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia: Trans Tech Publications Ltd. https://doi. org/10.4028/www.scientific.net/ AMM.567.545

Yamaguchi, H., Kawano, K., Teranishi, T., Matsui, K., & Miura, Y. (1988). Shear properties of fibrous peat under three-dimensional stresses. In Proceedings of the International Conference on Engineering Problems of Regional Soils (p. 497). Beijing, China: Publ by Pergamon Press plc.

Yamaguchi, H., Ohira, Y., Kogure, K., & Mori, S. (1985). Deformation and strength properties of peat. Proc. 11th international conference on soil mechanics and foundation engineering, San Francisco, August 1985. Vol. 4, (Balkema).

Yang, M., & Liu, K. (2016). Deformation behaviors of peat with influence of organic matter. SpringerPlus, 5(1), 1–18. https://doi.org/10.1186/ s40064-016-2232-3

Zawrzykraj, P., Rydelek, P., & Bąkowska, A. (2017). Geo-engineering properties of Eemian peats from Radzymin (central Poland) in the light of static cone penetration and dilatometer tests. Engineering Geology, 226, 290–300. https://doi.org/10.1016/j.enggeo.2017.07.001

Zhang, L., & O’Kelly, B. C. (2014). The principle of effective stress and triaxial compression testing of peat. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 167(1), 40–50. https://doi. org/10.1680/geng.12.00038

Zwanenburg, C., & Jardine, R. J. J. (2015). Laboratory, in situ and full-scale load tests to assess flood embankment stability on peat. Géotechnique, 65(4), 309–326. https:// doi.org/10.1680/geot.14.P.257

Publicado
2018-04-21
Sección
Ingeniería Civil