Toxic Income as a Trigger of Climate Change

Fander Falconí, Rafael Burbano, Pedro Cango, Jesús Ramos-Martín


The rate of CO2 emissions concentration in the atmosphere increases
the likelihood of significant impacts on humankind and ecosystems. The
assumption that permissible levels of greenhouse gas emissions cannot exceed the global average temperature increase of 2 ºC in relation to pre-industrial levels remains uncertain. Despite this uncertainty, the direct implication is that enormous quantities of fossil fuels have, thus far, wrongly been counted as assets by hydrocarbon firms as they cannot
be exploited if we want to keep climate under certain control. These are the socalled “toxic assets”. Due to the relationship among CO2 emissions, GDP, energy consumption, and energy efficiency, the concept of toxic assets can be transferred to toxic income, which is the income level that would generate levels of CO2 emissions incompatible with keeping climate change under control. This research, using a simulation model based on country-based econometric models, estimated a threshold for income per capita above which the temperature limit of 2 ºC would be surpassed. Under the business as usual scenario, average per capita income would be $14,208 (in constant 2010 USD) in 2033; and under
the intervention scenario, which reflects the commitments of the COP21 meeting held in Paris in December 2015, the toxic revenue would be $13,433 (in constant 2010 USD) in 2036.

Texto completo:



Rogelj, J.; Hare, W.; Lowe, J.; van Vuuren, D.P.; Riahi, K.; Matthews, B.; Hanaoka, T.; Jiang, K.; Meinshausen, M. Emission pathways consistent with a 2 ºC global temperature limit. Nat. Clim. Chang. 2011, 1, 413–418. [CrossRef ]

Den Elzen, M.; Meinshausen, M. Meeting the EU 2ºC climate target: global and regional emission implications. Clim. Policy 2006, 6, 545–564. [Cross-Ref ]

Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper, S.C.B.; Frieler, K.; Knutti, R.; Frame, D.J.; Allen, M.R. Greenhouse- gas emission targets for limiting global warming to 2 degrees C. Nature 2009, 458, 1158–1162. [CrossRef ] [PubMed]

Rogelj, J.; Hare, B.; Nabel, J.; Macey, K.; Schaeffer, M.; Markmann, K.; Meinshausen, M. Halfway to Copenhagen, no way to 2 ºC. Nat. Reports Clim. Chang. 2009, 3, 81–83. [CrossRef ]

Guivarch, C.; Hallegatte, S. 2C or not 2C? Glob. Environ. Chang. 2013, 23, 179–192. [CrossRef ]

Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) Cambridge University

Press: Cambridge, UK, 2013.

Boykoff, M.T.; Frame, D.; Randalls, S. Discursive stability meets climate instability: A critical exploration of the concept of “climate stabilization” in contemporary climate policy. Glob. Environ. Chang. 2010, 20, 53–64. [CrossRef ]

Cleveland, C.J.; Costanza, R.; Hall, C.A.S.; Kaufmann, R. Energy and the United States economy: A biophysical perspective. Science 1984, 225, 890–897.[CrossRef ]

Cleveland, C.J.; Kaufmann, R.K.; Stern, D.I. Aggregation and the role of energy in the economy. Ecol. Econ. 2000, 32, 301–317. [CrossRef ]

Csereklyei, Z.; Stern, D.I. Global Energy Use: Decoupling or Convergence? Energy Econ. 2015. [CrossRef ]

Stern, D.I. A multivariate cointegration analysis of the role of energy in the US macroeconomy. Energy Econ. 2000, 22, 267–283. [CrossRef ]

Grübler, A.; Nakic´enovic´, N. Decarbonizing the global energy system. Technol. Forecast. Soc. Change 1996, 53, 97–110. [CrossRef ]

Zhang, Y. Structural decomposition analysis of sources of decarbonizing economic development in China; 1992–2006. Ecol. Econ. 2009, 68, 2399–2405. [CrossRef ]

Brizga, J.; Feng, K.; Hubacek, K. Drivers of greenhouse gas emissions in the Baltic States: A structural decomposition analysis. Ecol. Econ. 2014, 98, 22–28. [CrossRef ]

Steinberger, J.K.; Roberts, J.T. From constraint to sufficiency: The decoupling of energy and carbon from human needs, 1975-2005. Ecol. Econ. 2010, 70, 425–433. [CrossRef ]

Goldemberg, J.; Tadeo Prado, L. The “decarbonization” of the world’s energy matrix. Energy Policy 2010, 38, 3274–3276. [CrossRef ]

Sonnenschein, J.; Mundaca, L. Decarbonization under green growth

strategies? The case of South Korea. J. Clean. Prod. 2016, 123, 180–193. [CrossRef ]

Steckel, J.C.; Brecha, R.J.; Jakob, M.; Strefler, J.; Luderer, G. Development without energy? Assessing future scenarios of energy consumption in developing countries. Ecol. Econ. 2013, 90, 53–67. [CrossRef ]

Jägemann, C.; Fürsch, M.; Hagspiel, S.; Nagl, S. Decarbonizing Europe’s power sector by 2050—Analyzing the economic implications of alternative decarbonization pathways. Energy

Econ. 2013, 40, 622–636. [CrossRef ]

Sioshansi, F.P. De-carbonizing electricity generation: It won’t be easy, cheap, nor enough. Util. Policy 2009, 17, 217–224. [CrossRef]

World Bank. World Development Indicators; The World Bank: Washington, DC, USA; Available online: (accessed on 24January 2019).

Marcucci, A.; Fragkos, P. Drivers of regional decarbonisation through 2100: A multi-model decomposition analysis. Energy Econ. 2015, 51, 111–124. [CrossRef]

Bows, A.; Anderson, K. Contraction and convergence: an assessment of the CCOptions model. Clim. Change 2008, 91, 275–290. [CrossRef ]

Meyer, A. Contraction & Convergence— The Global Solution to Climate Change; Green Books: Devon, UK, 2000.

Meyer, A. Contraction and Convergence. Eng. Sustain. 2004, 157, 3. [CrossRef ]

Barro, R.J.; Sala-i-Martin, X. Economic Growth, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2003; ISBN 978-0262025539.

McGlade, C.; Ekins, P. The geographical distribution of fossil fuels unused when limiting global warming to 2 ºC. Nature 2015, 517, 187–190. [CrossRef ]

Falconí, F. Cambio climático y activos tóxicos. ALAI 2014.

York, R.; Rosa, E.A.; Dietz, T. STIRPAT, IPAT and ImPACT: analytic tools for unpac

king the driving forces of environmental impacts. Ecol. Econ. 2003, 46, 351–365. [CrossRef ]

Polimeni, J.M.; Mayumi, K.; Giampietro, M.; Alcott, B. The Jevons Paradox and the Myth of Resource Efficiency Improvements; Earthscan: London, UK, 2008; ISBN 978-1-84407-462-4.

United Nations; Department of Economic and Social Affairs. Population Division World Population Prospects, the 2015 Revision, Volume I: Comprehensive Tables. ST/ESA/SER.A/379; United

Nations Department of Economic and Social Affairs Population Division: New York, NY, USA, 2015.

European Environment Agency. European Environment Agency Datasets; European Environment Agency: Copenhagen, Denmark, 2018; Available online: &c5=all&b_start=0.

Stern, D.I. Environmental Kuznets Curve. Encycl. Energy 2004, 2, 517–525.

Novales, A. Econometría; Mc- Graw-Hill: Madrid, Spain, 1988; ISBN

CDIAC. Frequently asked global change questions; CDIAC: Washington, DC, USA, 2015.

IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva,

Switzerland, 2014.

UNFCCC. Synthesis report on the aggregate effect of the intended nationally determined contributions; UNFCCC: Geneva, Switzerland, 2015.

Ritchie, H.; Roser, M. CO2 and other Greenhouse Gas Emissions. Available online: (accessed on 18 April 2019).

Jackson, T. Prosperity without Growth: Economics for a Finite Planet; Routledge: London, UK, 2011.

Cango, P.; Ramos-Martín, J.; Falconí, F. The Regional Political Economy of Knowledge and Environment. In Regionalism, Development and the Post-Commodities Boom in South America; Vivares, E.A., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 197–215. ISBN 978-3-319-62550-8.


Enlaces de Referencia

  • Por el momento, no existen enlaces de referencia