Revisión bibliográfica: Efectos del estrés sobre el envejecimiento biológico
Resumen
Mediante numerosas investigaciones, se ha encontrado evidencia convergente de la existencia de vías psicofisiológicas que inciden en el estrés, tanto agudo como crónico, sobre el proceso de envejecimiento. Una de las vías principales es la del estrés oxidativo, derivado del estrés crónico, cuyos efectos incluyen daños a las biomoléculas (como el ADN, los lípidos y las proteínas) y a los componentes de la células, como las mitocondrias y membranas. A su vez, estos daños pueden desencadenar la activación de la senescencia celular, cuyas repercusiones incluyen la aceleración del proceso de envejecimiento a nivel tisular, celular y génico, mediado por un tándem repetitivo de daño oxidativo y procesos inflamatorios. De acuerdo con la Organización Mundial de las Naciones Unidas (ONU), el ritmo de envejecimiento de la población se ha acelerado y se estima que, entre 2021 y 2050, el porcentaje de personas mayores de 65 años pasará del 10 al 16 por ciento a nivel mundial, lo que implica un impacto, tanto social como económico, debido a los cuidados y costos médicos que demandan las enfermedades relacionas con la edad. Se ha documentado ampliamente que tanto el estrés como el envejecimiento contribuyen al desarrollo de múltiples enfermedades crónicas y que la prevalencia del estrés es cada vez mayor en la población mundial. Por ende, aquí se presenta una integración de la amplia evidencia encontrada en la literatura sobre la aceleración el ritmo del proceso de envejecimiento que sucede como efecto del estrés, especialmente cuando es crónico.
Citas
Aguayo Moscoso, S. X., Montalvo Villagómez, S. X., Jara González, F. E., Vélez Páez, P. A., Velarde Montero, C. G., & Vélez Páez, J. L. (2020). Quiescencia y senescencia: enfoque traslacional al paciente oncológico y críticamente enfermo. INSPILIP. Revista Ecuatoriana de Ciencia, Tecnología e Innovacion en Salud Pública, 4(1). DOI:10.31790/inspilip.v4i1.154
Alghamdi, D., & Alghamdi, A. (2023). Corticosteroids Resistance Diseases Review. In Updates on Corticosteroids. IntechOpen. DOI: 10.5772/intechopen.109593
Ait Tayeb, A. E. K., Poinsignon, V., Chappell, K., Bouligand, J., Becquemont, L., & Verstuyft, C. (2023). Major Depressive Disorder and Oxidative Stress: A Review of Peripheral and Genetic Biomarkers According to Clinical Characteristics and Disease Stages. Antioxidants, 12(4), 942. DOI: 10.3390/antiox12040942
Aldecoa Bedoya, F. (2023). El factor de transcripción nuclear NF-κB en cáncer. Horizonte Médico (Lima), 23(1). https://doi.org/10.24265/horizmed.2023.v23n1.12
Alonso, D. Á., Mouchián, K., & Albónico, J. F. (2024). Importancia biológica de los telómeros. Revista de la Asociación Médica Argentina, 137(1).
Amador, C. S., & Sánchez-Muniz, F. J. (2021). Telómeros, telomerasa y envejecimiento. Una visita al Premio Nobel de Fisiología y Medicina de 2009. Journal of Negative and No Positive Results, 6(8), 1079-1100. DOI: https://doi.org/10.19230/jonnpr.4128
Aschbacher, K., O’Donovan, A., Wolkowitz, O. M., Dhabhar, F. S., Su, Y., & Epel, E. (2013). Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity. Psychoneuroendocrinology, 38(9), 1698-1708. doi: 10.1016/j.psyneuen.2013.02.004
Barbouti, A., Vasileiou, P. V., Evangelou, K., Vlasis, K. G., Papoudou-Bai, A., Gorgoulis, V. G., & Kanavaros, P. (2020). Implications of oxidative stress and cellular senescence in age-related thymus involution. Oxidative medicine and cellular longevity, 2020. doi: 10.1155/2020/7986071
Barnes, R. P., Fouquerel, E., & Opresko, P. L. (2019). The impact of oxidative DNA damage and stress on telomere homeostasis. Mechanisms of ageing and development, 177, 37-45. OI: 10.1016/j.mad.2018.03.013
Beaupere, C., Liboz, A., Fève, B., Blondeau, B., & Guillemain, G. (2021). Molecular mechanisms of glucocorticoid-induced insulin resistance. International journal of molecular sciences, 22(2), 623. doi: 10.3390/ijms22020623
Bethell, C., Jones, J., Gombojav, N., Linkenbach, J., & Sege, R. (2019). Positive childhood experiences and adult mental and relational health in a statewide sample: Associations across adverse childhood experiences levels. JAMA pediatrics, 173(11), e193007-e193007. doi: 10.1001/jamapediatrics.2019.3007
Birdee, G., Nelson, K., Wallston, K., Nian, H., Diedrich, A., Paranjape, S., ... & Gamboa, A. (2023). Slow breathing for reducing stress: The effect of extending exhale. Complementary therapies in medicine, 73, 102937. DOI: 10.1016/j.ctim.2023.102937
Blackburn, E., & Epel, E. (2017). The telomere effect: A revolutionary approach to living younger, healthier, longer. Hachette UK.
Borst, K., Dumas, A. A., & Prinz, M. (2021). Microglia: Immune and non-immune functions. Immunity, 54(10), 2194-2208. DOI: 10.1016/j.immuni.2021.09.014
Dafsari, F. S., & Jessen, F. (2020). Depression—an underrecognized target for prevention of dementia in Alzheimer’s disease. Translational psychiatry, 10(1), 160. DOI: 10.1038/s41398-020-0839-1
Juszczyk, G., Mikulska, J., Kasperek, K., Pietrzak, D., Mrozek, W., & Herbet, M. (2021). Chronic stress and oxidative stress as common factors of the pathogenesis of depression and Alzheimer’s disease: The role of antioxidants in prevention and treatment. Antioxidants, 10(9), 1439. doi: 10.3390/antiox10091439
Ji, N., Lei, M., Chen, Y., Tian, S., Li, C., & Zhang, B. (2023). How oxidative stress induces depression?. ASN neuro, 15(1) doi: 10.1177/17590914231181037
Boyle, C. C., Cole, S. W., Irwin, M. R., Eisenberger, N. I., & Bower, J. E. (2023). The role of inflammation in acute psychosocial stress-induced modulation of reward processing in healthy female adults. Brain, Behavior, & Immunity-Health, 28, DOI: 10.1016/j.bbih.2023.100588
Burbano, M. S. J., & Gilson, E. (2020). Long-lived post-mitotic cell aging: is a telomere clock at play?. Mechanisms of Ageing and Development, 189, DOI: 10.1016/j.mad.2020.111256
Buzoglu, H. D., Burus, A., Bayazıt, Y., & Goldberg, M. (2023). Stem cell and oxidative stress-inflammation cycle. Current stem cell research & therapy, 18(5), 641-652, DOI: 10.2174/1574888X17666221012151425
Calcaterra, V., Vinci, F., Casari, G., Pelizzo, G., De Silvestri, A., De Amici, M., ... & Cena, H. (2019). Evaluation of allostatic load as a marker of chronic stress in children and the importance of excess weight. Frontiers in Pediatrics, 7, 335. DOI: 10.3389/fped.2019.00335
Campisi, J., Kapahi, P., Lithgow, G. J., Melov, S., Newman, J. C., & Verdin, E. (2019). From discoveries in ageing research to therapeutics for healthy ageing. Nature, 571(7764), 183-192. DOI: 10.1038/s41586-019-1365-2
Capellino, S., Claus, M., & Watzl, C. (2020). Regulation of natural killer cell activity by glucocorticoids, serotonin, dopamine, and epinephrine. Cellular & molecular immunology, 17(7), 705-711. DOI: 10.1038/s41423-020-0477-9
Carreno, G., Guiho, R., & Martinez‐Barbera, J. P. (2021). Cell senescence in neuropathology: A focus on neurodegeneration and tumours. Neuropathology and Applied Neurobiology, 47(3), 359-378. DOI: 10.1111/nan.12689
Carroll, J. E., Mahrer, N. E., Shalowitz, M., Ramey, S., & Schetter, C. D. (2020). Prenatal maternal stress prospectively relates to shorter child buccal cell telomere length. Psychoneuroendocrinology, 121, 104841. DOI: 10.1016/j.psyneuen.2020.104841
Carvajal Carvajal, C. (2019). Especies reactivas del oxígeno: formación, función y estrés oxidativo. Medicina Legal de Costa Rica, 36(1), 91-100. www.binasss.sa.cr/ojssalud/index.php/mlcr/article/view/116
Cerveira de Baumont, A., Hoffmann, M. S., Bortoluzzi, A., Fries, G. R., Lavandoski, P., Grun, L. K., ... & Manfro, G. G. (2021). Telomere length and epigenetic age acceleration in adolescents with anxiety disorders. Scientific Reports, 11(1), 7716. DOI: 10.1038/s41598-021-87045-w
Chainy, G. B., & Sahoo, D. K. (2020). Hormones and oxidative stress: an overview. Free Radical Research, 54(1), 1-26. DOI: 10.1080/10715762.2019.1702656
Chang, X., Jiang, X., Mkandarwire, T., & Shen, M. (2019). Associations between adverse childhood experiences and health outcomes in adults aged 18–59 years. PloS one, 14(2), e0211850. DOI: 10.1371/journal.pone.0211850
Chernyak, B. V., Popova, E. N., Prikhodko, A. S., Grebenchikov, O. A., Zinovkina, L. A., & Zinovkin, R. A. (2020). COVID-19 and oxidative stress. Biochemistry (Moscow), 85, 1543-1553. DOI: 10.1134/S0006297920120068
Chiorcea-Paquim, A. M. (2022). 8-oxoguanine and 8-oxodeoxyguanosine Biomarkers of Oxidative DNA Damage: A Review on HPLC–ECD Determination. Molecules, 27(5), 1620. DOI: 10.3390/molecules27051620
Chocron, E. S., Munkácsy, E., & Pickering, A. M. (2019). Cause or casualty: The role of mitochondrial DNA in aging and age-associated disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1865(2), 285-297. DOI: 10.1016/j.bbadis.2018.09.035
Correia, A. S., Cardoso, A., & Vale, N. (2023). Oxidative stress in depression: the link with the stress response, neuroinflammation, serotonin, neurogenesis and synaptic plasticity. Antioxidants, 12(2), 470. DOI: 10.3390/antiox12020470
Crandall, A., Miller, J. R., Cheung, A., Novilla, L. K., Glade, R., Novilla, M. L. B., ... & Hanson, C. L. (2019). ACEs and counter-ACEs: How positive and negative childhood experiences influence adult health. Child abuse & neglect, 96, DOI: 10.1016/j.chiabu.2019.104089
Cui, B., Luo, Y., Tian, P., Peng, F., Lu, J., Yang, Y., ... & Liu, Q. (2019). Stress-induced epinephrine enhances lactate dehydrogenase A and promotes breast cancer stem-like cells. The Journal of clinical investigation, 129(3), 1030-1046. DOI: 10.1172/JCI121685
Dar, T., Radfar, A., Abohashem, S., Pitman, R. K., Tawakol, A., & Osborne, M. T. (2019). Psychosocial stress and cardiovascular disease. Current treatment options in cardiovascular medicine, 21, 1-17. DOI: 10.1007/s11936-019-0724-5
de Carvalho, J. C., da Silva-Neto, P. V., Toro, D. M., Fuzo, C. A., Nardini, V., Pimentel, V. E., ... & ImmunoCovid Study Group. (2023). The interplay among glucocorticoid therapy, platelet-activating factor and endocannabinoid release influences the inflammatory response to COVID-19. Viruses, 15(2), 573. DOI: 10.3390/v15020573
de Molina, M., y Mersich, S. (2023) Diafonía entre estrés oxidativo y NF-κB en células infectadas con virus. Revista QuímicaViva. Número 2, año 22. ISSN 1666-7948 https://www.redalyc.org/pdf/863/86320104.pdf
Dodig, S., Čepelak, I., & Pavić, I. (2019). Hallmarks of senescence and aging. Biochemia medica, 29(3), 483-497. https://doi.org/10.11613/BM.2019.030501
Dong, C. (2021). Cytokine regulation and function in T cells. Annual review of immunology, 39, 51-76. DOI: 10.1146/annurev-immunol-061020-053702
dos Santos Oliveira, N. C., Katrinli, S., de Assis, S. G., Smith, A. K., & Serpeloni, F. (2023). Community and domestic violence are associated with DNA methylation GrimAge acceleration and heart rate variability in adolescents. European journal of psychotraumatology, 14(2), doi: 10.1080/20008066.2023.2202054
Dunn, J. H., & Koo, J. (2013). Psychological Stress and skin aging: a review of possible mechanisms and potential therapies. Dermatology online journal, 19(6). DOI:10.5070/D3196018561
Escobedo, J. C. (2020). Estrés y enfermedad mental: la otra epidemia. Revista Médica de la Universidad Veracruzana, 19(2), 15-20. https://doi.org/10.25009/rmuv.2019.2.64
Enomoto, S., & Kato, T. A. (2022). Stress, Microglial Activation, and Mental Disorders. Stress-Related Disorders. DOI:10.5772/intechopen.103784
Escoter-Torres, L., Caratti, G., Mechtidou, A., Tuckermann, J., Uhlenhaut, N. H., & Vettorazzi, S. (2019). Fighting the fire: mechanisms of inflammatory gene regulation by the glucocorticoid receptor. Frontiers in immunology, 10, DOI: 10.3389/fimmu.2019.01859
Eynard, A. R. (2021). Inflamación de “bajo grado” en el Sistema Nervioso y estrés crónico: aspectos celulares y moleculares básicos en su fisiopatología. Pinelatinoamericana, 1(1), 3-11. http://id.caicyt.gov.ar/ark:/s27968677/eo6x2ps5j
Fernández, J., Cachofeiro, V., Cardinali, D. , Delpón, E., Díaz-Rubio, E., & Escrich, E. (2020). Fisiología humana. McGraw Hill. https://www.untumbes.edu.pe/bmedicina/libros/Libros10/libro123.pdf
Flaherty, R. L., Owen, M., Fagan-Murphy, A., Intabli, H., Healy, D., Patel, A., ... & Flint, M. S. (2017). Glucocorticoids induce production of reactive oxygen species/reactive nitrogen species and DNA damage through an iNOS mediated pathway in breast cancer. Breast Cancer Research, 19(1), 1-13. DOI: 10.1186/s13058-017-0823-8
Fonseca, C. A. G. (2020). Los virus RNA inducen estrés oxidativo celular y los antioxidantes reducen la generación de partículas virales, tanto in vitro como in vivo. Ingenio Libre, 8(18), 78-99. https://hdl.handle.net/10901/18929
Gallup (23 de febrero de 2023). Gallup’s 2023 Global Emotions Report. Recuperado de: https://www.gallup.com/analytics/349280/gallup-global-emotions-report.aspx
Garrido, M. del R. . (2023). El envejecimiento: ¿Podemos frenarlo? Telómeros/Telomerasa, Senescencia Celular Primera Parte. Revista De La Facultad De Farmacia, 86(3). DOI:10.54305/RFFUCV.2023.86.3.15
Gavia-García, G., Rosado-Pérez, J., Arista-Ugalde, T. L., Aguiñiga-Sánchez, I., Santiago-Osorio, E., & Mendoza-Núñez, V. M. (2021). Telomere length and oxidative stress and its relation with metabolic syndrome components in the aging. Biology, 10(4), 253. doi: 10.3390/biology10040253
Grasso, D. J., Drury, S., Briggs-Gowan, M., Johnson, A., Ford, J., Lapidus, G., ... & Covault, J. (2020). Adverse childhood experiences, posttraumatic stress, and FKBP5 methylation patterns in postpartum women and their newborn infants. Psychoneuroendocrinology, 114, DOI: 10.1016/j.psyneuen.2020.104604
Green, A. A., & Kinchen, E. V. (2021). The effects of mindfulness meditation on stress and burnout in nurses. Journal of Holistic Nursing, 39(4), 356-368. DOI: 10.1177/08980101211015818
Hajam, Y. A., Rani, R., Ganie, S. Y., Sheikh, T. A., Javaid, D., Qadri, S. S., ... & Reshi, M. S. (2022). Oxidative stress in human pathology and aging: molecular mechanisms and perspectives. Cells, 11(3), 552. DOI: 10.3390/cells11030552
Hamlat, E. J., Prather, A. A., Horvath, S., Belsky, J., & Epel, E. S. (2021). Early life adversity, pubertal timing, and epigenetic age acceleration in adulthood. Developmental Psychobiology, 63(5), 890-902. DOI: 10.1002/dev.22085
Hantsoo, L., Jašarević, E., Criniti, S., McGeehan, B., Tanes, C., Sammel, M. D., ... & Epperson, C. N. (2019). Childhood adversity impact on gut microbiota and inflammatory response to stress during pregnancy. Brain, Behavior, and Immunity, 75, 240-250. DOI: 10.1016/j.bbi.2018.11.005
Hariharan, A., Hakeem, A. R., Radhakrishnan, S., Reddy, M. S., & Rela, M. (2021). The role and therapeutic potential of NF-kappa-B pathway in severe COVID-19 patients. Inflammopharmacology, 29, 91-100. DOI: 10.1007/s10787-020-00773-9
Hayashi, T. (2015). Conversion of psychological stress into cellular stress response: Roles of the sigma‐1 receptor in the process. Psychiatry and clinical neurosciences, 69(4), 179-191. DOI: 10.1111/pcn.12262
Hayley, S., Hakim, A. M., & Albert, P. R. (2021). Depression, dementia and immune dysregulation. Brain, 144(3), 746-760. DOI: 10.1093/brain/awaa405
Holub, A., Mousa, S., Abdolahi, A., Godugu, K., Tu, X. M., Brenna, J. T., & Block, R. C. (2020). The effects of aspirin and N-3 fatty acids on telomerase activity in adults with diabetes mellitus. Nutrition, Metabolism and Cardiovascular Diseases, 30(10), 1795-1799. DOI: 10.1016/j.numecd.2020.06.014
Huberty, J., Green, J., Glissmann, C., Larkey, L., Puzia, M., & Lee, C. (2019). Efficacy of the mindfulness meditation mobile app “calm” to reduce stress among college students: Randomized controlled trial. JMIR mHealth and uHealth, 7(6), e14273. doi: 10.2196/14273
James, K. A., Stromin, J. I., Steenkamp, N., & Combrinck, M. I. (2023). Understanding the relationships between physiological and psychosocial stress, cortisol and cognition. Frontiers in Endocrinology, 14, doi: 10.3389/fendo.2023.1085950
Janšáková, K., Belica, I., Rajčániová, E., Rajčáni, J., Kyselicová, K., Celušáková, H., ... & Ostatníková, D. (2021). The acute effect of psychosocial stress on the level of oxidative stress in children. International Journal of Psychophysiology, 161, 86-90. DOI: 10.1016/j.ijpsycho.2021.01.007
Jenkins, N. D., Rogers, E. M., Banks, N. F., Tomko, P. M., Sciarrillo, C. M., Emerson, S. R., ... & Teague, T. K. (2021). Childhood psychosocial stress is linked with impaired vascular endothelial function, lower SIRT1, and oxidative stress in young adulthood. American Journal of Physiology-Heart and Circulatory Physiology, 321(3), H532-H541. DOI: 10.1152/ajpheart.00123.2021
Jiang, S., Postovit, L., Cattaneo, A., Binder, E. B., & Aitchison, K. J. (2019). Epigenetic modifications in stress response genes associated with childhood trauma. Frontiers in psychiatry, 10, 808. DOI: 10.3389/fpsyt.2019.00808
Jimeno, B., & Verhulst, S. (2023). Do glucocorticoids indicate stress? Meta-analysis reveals a tight association between glucocorticoids and metabolic rate. bioRxiv, https://doi.org/10.7554/eLife.88205.2
Johnson, J. D., Barnard, D. F., Kulp, A. C., & Mehta, D. M. (2019). Neuroendocrine regulation of brain cytokines after psychological stress. Journal of the Endocrine Society, 3(7), 1302-1320. doi: 10.1210/js.2019-00053
Karanikas, E., Daskalakis, N. P., & Agorastos, A. (2021). Oxidative dysregulation in early life stress and posttraumatic stress disorder: a comprehensive review. Brain Sciences, 11(6), 723. DOI: 10.3390/brainsci11060723
Kerahrodi, J. G., & Michal, M. (2020). The fear-defense system, emotions, and oxidative stress. Redox biology, 37, 101588. doi: 10.1016/j.redox.2020.101588
Kim, E., Zhao, Z., Rzasa, J. R., Glassman, M., Bentley, W. E., Chen, S., ... & Payne, G. F. (2021). Association of acute psychosocial stress with oxidative stress: Evidence from serum analysis. Redox biology, 47, 102138. doi: 10.1016/j.redox.2021.102138
Kowluru, A. (2020). Oxidative stress in cytokine-induced dysfunction of the pancreatic beta cell: Known knowns and known unknowns. Metabolites, 10(12), 480. DOI: 10.3390/metabo10120480
Kwon, J., Kim, Y. J., Choi, K., Seol, S., & Kang, H. J. (2019). Identification of stress resilience module by weighted gene co-expression network analysis in Fkbp5-deficient mice. Molecular Brain, 12, 1-4. DOI: 10.1186/s13041-019-0521-9
Lapp, H. E., Bartlett, A. A., & Hunter, R. G. (2019). Stress and glucocorticoid receptor regulation of mitochondrial gene expression. Journal of molecular endocrinology, 62(2), R121-R128. DOI: 10.1530/JME-18-0152
Legüe, M. (2022). Relevancia de los mecanismos epigenéticos en el neurodesarrollo normal y consecuencias de sus perturbaciones. Revista Médica Clínica Las Condes, 33(4), 347-357. DOI:10.1016/j.rmclc.2022.07.001
Lemay, V., Hoolahan, J., & Buchanan, A. (2019). Impact of a yoga and meditation intervention on students' stress and anxiety levels. American journal of pharmaceutical education, 83(5), 7001. DOI: 10.5688/ajpe7001
Lin, J., & Epel, E. (2022). Stress and telomere shortening: Insights from cellular mechanisms. Ageing Research Reviews, 73, 101507. DOI: 10.1016/j.arr.2021.101507
Liu, C. Y., Wang, X., Liu, C., & Zhang, H. L. (2019). Pharmacological targeting of microglial activation: new therapeutic approach. Frontiers in cellular neuroscience, 13, 514. DOI: 10.3389/fncel.2019.00514
Loewenthal, J., Dyer, N. L., Lipsyc-Sharf, M., Borden, S., Mehta, D. H., Dusek, J. A., & Khalsa, S. B. S. (2021). Evaluation of a yoga-based mind-body intervention for resident physicians: a randomized clinical trial. Global Advances in Health and Medicine, 10, doi: 10.1177/21649561211001038
Magnani, F., & Mattevi, A. (2019). Structure and mechanisms of ROS generation by NADPH oxidases. Current opinion in structural biology, 59, 91-97. DOI: 10.1016/j.sbi.2019.03.001
Maldonado, E., Morales-Pison, S., Urbina, F., & Solari, A. (2023). Aging hallmarks and the role of oxidative stress. Antioxidants, 12(3), 651. DOI: 10.3390/antiox12030651
Malekpour, M., Shekouh, D., Safavinia, M. E., Shiralipour, S., Jalouli, M., Mortezanejad, S., ... & Ebrahimi, N. D. (2023). Role of FKBP5 and its genetic mutations in stress-induced psychiatric disorders: an opportunity for drug discovery. Frontiers in Psychiatry, 14, doi: 10.3389/fpsyt.2023.1182345
Marchetti, L., & Engelhardt, B. (2020). Immune cell trafficking across the blood-brain barrier in the absence and presence of neuroinflammation. Vascular Biology, 2(1), H1-H18. doi: 10.1530/VB-19-0033
Marin, I., Serrano, M., & Pietrocola, F. (2023). Recent insights into the crosstalk between senescent cells and CD8 T lymphocytes. npj Aging, 9(1), 8. DOI: 10.1038/s41514-023-00105-5
Marini, S., Davis, K. A., Soare, T. W., Zhu, Y., Suderman, M. J., Simpkin, A. J., ... & Dunn, E. C. (2020). Adversity exposure during sensitive periods predicts accelerated epigenetic aging in children. Psychoneuroendocrinology, 113, doi: 10.1016/j.psyneuen.2019.104484
Martemucci, G., Portincasa, P., Di Ciaula, A., Mariano, M., Centonze, V., & D’Alessandro, A. G. (2022). Oxidative stress, aging, antioxidant supplementation and their impact on human health: An overview. Mechanisms of Ageing and Development, 206, DOI: 10.1016/j.mad.2022.111707
Martínez de Toda, I., Miguélez, L., Siboni, L., Vida, C., & De la Fuente, M. (2019). High perceived stress in women is linked to oxidation, inflammation and immunosenescence. Biogerontology, 20, 823-835. DOI: 10.1007/s10522-019-09829-y
Martínez-Cué, C., & Rueda, N. (2020). Cellular senescence in neurodegenerative diseases. Frontiers in cellular neuroscience, 14, 16. DOI: 10.3389/fncel.2020.00016
McKenna, B. G., Mekawi, Y., Katrinli, S., Carter, S., Stevens, J. S., Powers, A., ... & Michopoulos, V. (2021). When anger remains unspoken: anger and accelerated epigenetic aging among stress-exposed black Americans. Psychosomatic medicine, 83(9), 949-958. DOI: 10.1097/PSY.0000000000001007
Merabet, N., Lucassen, P. J., Crielaard, L., Stronks, K., Quax, R., Sloot, P. M., ... & Nicolaou, M. (2022). How exposure to chronic stress contributes to the development of type 2 diabetes: A complexity science approach. Frontiers in Neuroendocrinology, 65, DOI: 10.1016/j.yfrne.2021.100972
Meulmeester, F. L., Luo, J., Martens, L. G., Mills, K., van Heemst, D., & Noordam, R. (2022). Antioxidant supplementation in oxidative stress-related diseases: What have we learned from studies on alpha-tocopherol?. Antioxidants, 11(12), 2322. doi: 10.3390/antiox11122322
Miao, Z., Wang, Y., & Sun, Z. (2020). The relationships between stress, mental disorders, and epigenetic regulation of BDNF. International journal of molecular sciences, 21(4), 1375. doi: 10.3390/ijms21041375
Mittelbrunn, M., & Kroemer, G. (2021). Hallmarks of T cell aging. Nature immunology, 22(6), 687-698. DOI: 10.1038/s41590-021-00927-z
Mizgier, M., Jarząbek-Bielecka, G., Wendland, N., Jodłowska-Siewert, E., Nowicki, M., Brożek, A., ... & Opydo-Szymaczek, J. (2021). Relation between inflammation, oxidative stress, and macronutrient intakes in normal and excessive body weight adolescent girls with clinical features of polycystic ovary syndrome. Nutrients, 13(3), 896, doi: 10.3390/nu13030896
Monaghan, P., & Haussmann, M. F. (2006). Do telomere dynamics link lifestyle and lifespan?. Trends in Ecology & Evolution, 21(1), 47-53. DOI: 10.1016/j.tree.2005.11.007
Mosley-Johnson, E., Campbell, J. A., Garacci, E., Walker, R. J., & Egede, L. E. (2021). Stress that Endures: Influence of Adverse Childhood Experiences on Daily Life Stress and Physical Health in Adulthood. Journal of affective disorders, 284, 38-43, doi: 10.1016/j.jad.2021.02.018
Mourtzi, N., Sertedaki, A., & Charmandari, E. (2021). Glucocorticoid signaling and epigenetic alterations in stress-related disorders. International journal of molecular sciences, 22(11), 5964. DOI: 10.3390/ijms22115964
Muscat, S. M., & Barrientos, R. M. (2021). The perfect cytokine storm: how peripheral immune challenges impact brain plasticity & memory function in aging. Brain Plasticity, 7(1), 47-60. doi: 10.3233/BPL-210127
Niraula, A., Witcher, K. G., Sheridan, J. F., & Godbout, J. P. (2019). Interleukin-6 induced by social stress promotes a unique transcriptional signature in the monocytes that facilitate anxiety. Biological psychiatry, 85(8), 679-689. DOI: 10.1016/j.biopsych.2018.09.030
Norris, G. T., & Kipnis, J. (2019). Immune cells and CNS physiology: Microglia and beyond. Journal of experimental medicine, 216(1), 60-70. DOI: 10.1084/jem.20180199
Nwanaji-Enwerem, J. C., Cardenas, A., Gao, X., Wang, C., Vokonas, P., Spiro, A., ... & Schwartz, J. (2023). Psychological stress and epigenetic aging in older men: The VA normative aging study. Translational medicine of aging, 7, 66-74. DOI: 10.1016/j.tma.2023.06.003
Ogrodnik, M., Salmonowicz, H., & Gladyshev, V. N. (2019). Integrating cellular senescence with the concept of damage accumulation in aging: Relevance for clearance of senescent cells. Aging cell, 18(1), e12841. DOI: 10.1111/acel.12841
Ortiz, R., Zhao, S., Kline, D. M., Brock, G., Carroll, J. E., Seeman, T. E., ... & Joseph, J. J. (2023). Childhood environment early life stress, caregiver warmth, and associations with the cortisol diurnal curve in adulthood: The coronary artery risk development in young adults (CARDIA) study. Psychoneuroendocrinology, 149, DOI: 10.1016/j.psyneuen.2022.106008
Palma-Gudiel, H., Fañanás, L., Horvath, S., & Zannas, A. S. (2020). Psychosocial stress and epigenetic aging. International review of neurobiology, 150, 107-128. DOI: 10.1016/bs.irn.2019.10.020
Palumbo, M. L., Prochnik, A., Wald, M. R., & Genaro, A. M. (2020). Chronic stress and glucocorticoid receptor resistance in asthma. Clinical Therapeutics, 42(6), 993-1006. DOI: 10.1016/j.clinthera.2020.03.002
Park, C., Rosenblat, J. D., Brietzke, E., Pan, Z., Lee, Y., Cao, B., ... & McIntyre, R. S. (2019). Stress, epigenetics and depression: a systematic review. Neuroscience & Biobehavioral Reviews, 102, 139-152. DOI: 10.1016/j.neubiorev.2019.04.010
Patel, J., Baptiste, B. A., Kim, E., Hussain, M., Croteau, D. L., & Bohr, V. A. (2020). DNA damage and mitochondria in cancer and aging. Carcinogenesis, 41(12), 1625-1634. DOI: 10.1093/carcin/bgaa114
Perrin, A. J., Horowitz, M. A., Roelofs, J., Zunszain, P. A., & Pariante, C. M. (2019). Glucocorticoid resistance: is it a requisite for increased cytokine production in depression? A systematic review and meta-analysis. Frontiers in psychiatry, 10, 423. doi: 10.3389/fpsyt.2019.00423
Pilozzi, A., Carro, C., & Huang, X. (2020). Roles of β-endorphin in stress, behavior, neuroinflammation, and brain energy metabolism. International journal of molecular sciences, 22(1), 338. doi: 10.3390/ijms22010338
Polsky, L. R., Rentscher, K. E., & Carroll, J. E. (2022). Stress-induced biological aging: A review and guide for research priorities. Brain, behavior, and immunity, 104, 97-109. doi: 10.1016/j.bbi.2022.05.016
Provençal, N., Arloth, J., Cattaneo, A., Anacker, C., Cattane, N., Wiechmann, T., ... & Binder, E. B. (2020). Glucocorticoid exposure during hippocampal neurogenesis primes future stress response by inducing changes in DNA methylation. Proceedings of the National Academy of Sciences, 117(38), 23280-23285. DOI: 10.1073/pnas.1820842116
Pulido, S. D., Escrig-Larena, J. I., & Mittelbrunn, M. (2022). Senescencia de linfocitos T: la nueva diana terapéutica contra el envejecimiento. In Anales de la Real Academia Nacional de Medicina (Vol. 139, No. 02, p. 150). Real Academia Nacional de Medicina. DOI: 10.32440/ar.2022.139.02.doc01
Quatrini, L., Ricci, B., Ciancaglini, C., Tumino, N., & Moretta, L. (2021). Regulation of the immune system development by glucocorticoids and sex hormones. Frontiers in Immunology, 12, 672853. doi: 10.3389/fimmu.2021.672853
Razgonova, M. P., Zakharenko, A. M., Golokhvast, K. S., Thanasoula, M., Sarandi, E., Nikolouzakis, K., ... & Tsatsakis, A. (2020). Telomerase and telomeres in aging theory and chronographic aging theory. Molecular medicine reports, 22(3), 1679-1694. doi: 10.3892/mmr.2020.11274
Rentscher, K. E., Carroll, J. E., Repetti, R. L., Cole, S. W., Reynolds, B. M., & Robles, T. F. (2019). Chronic stress exposure and daily stress appraisals relate to biological aging marker p16INK4a. Psychoneuroendocrinology, 102, 139-148. DOI: 10.1016/j.psyneuen.2018.12.006
Robinson, N. J., & Schiemann, W. P. (2022). Telomerase in Cancer: Function, Regulation, and Clinical Translation. Cancers, 14(3), 808. DOI: 10.3390/cancers14030808
Rocamora-Reverte, L., Villunger, A., & Wiegers, G. J. (2022). Cell-specific immune regulation by glucocorticoids in murine models of infection and inflammation. Cells, 11(14), 2126. DOI: 10.3390/cells11142126
Romero, E. E. R., Young, J., & Salado-Castillo, R. (2019). Fisiología del estrés y su integración al sistema nervioso y endocrino. Revista médico científica, 32, 61-70. DOI: https://doi.org/10.37416/rmc.v32i1.535
Rubio, R. (2021). ¿Las especies reactivas del oxígeno y el sistema de defensa antioxidante se relacionan con la respuesta inflamatoria del SARS-CoV-2?. Medicina, 43(3), 382-400. DOI:10.56050/01205498.1622
Sah, E., Krishnamurthy, S., Ahmidouch, M. Y., Gillispie, G. J., Milligan, C., & Orr, M. E. (2021). The cellular senescence stress response in post-mitotic brain cells: cell survival at the expense of tissue degeneration. Life, 11(3), 229. DOI: 10.3390/life11030229
Saldaña-Cruz, A. M., Gallardo-Moya, S. G., Campos-Medina, L., & Brambila-Tapia, A. J. L. (2024). Association between Oxidative Stress with Psychological and Biochemical Variables in a Sample of Healthy Mexican People: A Cross-Sectional Study. Antioxidants, 13(1), 110. DOI: 10.3390/antiox13010110
Sameri, S., Samadi, P., Dehghan, R., Salem, E., Fayazi, N., & Amini, R. (2020). Stem cell aging in lifespan and disease: a state-of-the-art review. Current Stem Cell Research & Therapy, 15(4), 362-378. DOI: 10.2174/1574888X15666200213105155
Scarian, E., Viola, C., Dragoni, F., Di Gerlando, R., Rizzo, B., Diamanti, L., ... & Pansarasa, O. (2024). New insights into oxidative stress and inflammatory response in neurodegenerative diseases. International Journal of Molecular Sciences, 25(5), 2698. DOI: 10.3390/ijms25052698
Schiele, M. A., Gottschalk, M. G., & Domschke, K. (2020). The applied implications of epigenetics in anxiety, affective and stress-related disorders-A review and synthesis on psychosocial stress, psychotherapy and prevention. Clinical psychology review, 77, DOI: 10.1016/j.cpr.2020.101830
Schramm, E., & Waisman, A. (2022). Microglia as central protagonists in the chronic stress response. Neurology: Neuroimmunology & Neuroinflammation, 9(6), e200023. DOI: 10.1212/NXI.0000000000200023
Schreck, R., Rieber, P., & Baeuerle, P. A. (1991). Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF‐kappa B transcription factor and HIV‐1. The EMBO journal, 10(8), 2247-2258. doi: 10.1002/j.1460-2075.1991.tb07761.x
Serpeloni, F., Nätt, D., Assis, S. G. D., Wieling, E., & Elbert, T. (2020). Experiencing community and domestic violence is associated with epigenetic changes in DNA methylation of BDNF and CLPX in adolescents. Psychophysiology, 57(1), e13382. DOI: 10.1111/psyp.13382
Sharma, R., & Padwad, Y. (2020). Perspectives of the potential implications of polyphenols in influencing the interrelationship between oxi-inflammatory stress, cellular senescence and immunosenescence during aging. Trends in food science & technology, 98, 41-52. DOI:10.1016/j.tifs.2020.02.004
Shimanoe, C., Hara, M., Nishida, Y., Nanri, H., Horita, M., Yamada, Y., ... & Tanaka, K. (2018). Perceived stress, depressive symptoms, and oxidative DNA damage. Psychosomatic Medicine, 80(1), 28-33. DOI: 10.1097/PSY.0000000000000513
Shimba, A., & Ikuta, K. (2020, December). Control of immunity by glucocorticoids in health and disease. In Seminars in immunopathology (Vol. 42, No. 6, pp. 669-680). Berlin/Heidelberg: Springer Berlin Heidelberg. DOI: 10.1007/s00281-020-00827-8
Shirakawa, K., & Sano, M. (2021). T cell immunosenescence in aging, obesity, and cardiovascular disease. Cells, 10(9), 2435. DOI: 10.3390/cells10092435
Shirata, T., Suzuki, A., Matsumoto, Y., Noto, K., Goto, K., & Otani, K. (2020). Interrelation between increased bdnf gene methylation and high sociotropy, a personality vulnerability factor in cognitive model of depression. Neuropsychiatric Disease and Treatment, 1257-1263, doi: 10.2147/NDT.S252177
Sies, H. (2020). Oxidative stress: Concept and some practical aspects. Antioxidants, 9(9), 852. DOI: 10.3390/antiox9090852
Simons, R. L., Ong, M. L., Lei, M. K., Klopach, E., Berg, M., Zhang, Y., ... & Beach, S. R. (2022). Shifts in lifestyle and socioeconomic circumstances predict change—for better or worse—in speed of epigenetic aging: a study of middle-aged black women. Social Science & Medicine, 307, DOI: 10.1016/j.socscimed.2022.115175
Song, P., An, J., & Zou, M. H. (2020). Immune clearance of senescent cells to combat ageing and chronic diseases. Cells, 9(3), 671. doi: 10.3390/cells9030671
Stojanović, N. M., Randjelović, P. J., Pavlović, D., Stojiljković, N. I., Jovanović, I., Sokolović, D., & Radulović, N. S. (2021). An impact of psychological stress on the interplay between salivary oxidative stress and the classic psychological stress-related parameters. Oxidative Medicine and Cellular Longevity, 2021. DOI: 10.1155/2021/6635310
Sumner, J. A., Colich, N. L., Uddin, M., Armstrong, D., & McLaughlin, K. A. (2019). Early experiences of threat, but not deprivation, are associated with accelerated biological aging in children and adolescents. Biological psychiatry, 85(3), 268-278. DOI: 10.1016/j.biopsych.2018.09.008
Sun, L., Chiang, J. Y., Choi, J. Y., Xiong, Z. M., Mao, X., Collins, F. S., ... & Cao, K. (2019). Transient induction of telomerase expression mediates senescence and reduces tumorigenesis in primary fibroblasts. Proceedings of the National Academy of Sciences, 116(38), 18983-18993. DOI: 10.1073/pnas.1907199116
Suzuki, K., Tominaga, T., Ruhee, R. T., & Ma, S. (2020). Characterization and modulation of systemic inflammatory response to exhaustive exercise in relation to oxidative stress. Antioxidants, 9(5), 401, doi: 10.3390/antiox9050401
Takasugi, M., Yoshida, Y., & Ohtani, N. (2022). Cellular senescence and the tumour microenvironment. Molecular Oncology, 16(18), 3333-3351. DOI: 10.1002/1878-0261.13268
Tamayo Pérez, V. I., & Morilla Guzmán, A. A. (2021). Epigenética, sexo masculino y enfermedades neonatales. Revista Cubana de Pediatría, 93(4). https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=112393
Tang, Y., Ma, D., Liang, M., Hou, Y., Zhang, M., Wang, J., ... & Zhang, J. (2023). Stress-inducible IL-6 is regulated by KLF7 in brown adipocytes. Heliyon, 9(4). doi: 10.1016/j.heliyon.2023.e14931
Targum, S. D., & Nemeroff, C. B. (2019). The effect of early life stress on adult psychiatric disorders. Innovations in clinical neuroscience, 16(1-2), 35. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450674/
Taylor, J. P., & Hubert, M. T. (2021). The role of NADPH oxidases in infectious and inflammatory diseases. Redox biology, 48, doi: 10.1016/j.redox.2021.102159
Teissier, T., Boulanger, E., & Cox, L. S. (2022). Interconnections between inflammageing and immunosenescence during ageing. Cells, 11(3), 359. DOI: 10.3390/cells11030359
Thomas, R., Wang, W., & Su, D. M. (2020). Contributions of age-related thymic involution to immunosenescence and inflammaging. Immunity & Ageing, 17(1), 1-17. DOI: 10.1186/s12979-020-0173-8
United Nations (UN) (2023). World Social Report 2023. United Nations publication. https://www.un-ilibrary.org/content/books/9789210019682/read
Urbaniak, S. K., Boguszewska, K., Szewczuk, M., Kaźmierczak-Barańska, J., & Karwowski, B. T. (2020). 8-Oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG) and 8-hydroxy-2′-deoxyguanosine (8-OHdG) as a potential biomarker for gestational diabetes mellitus (GDM) development. Molecules, 25(1), 202. DOI: 10.3390/molecules25010202
Urizar, D. M. C., Orellana, A. M. E., Huertas, M. A. G., de León, A. M. L., & Gómez, E. R. L. (2022). Vía neuroendocrina del estrés y sus fundamentos fisiológicos asociados. Revista Académica Sociedad del Conocimiento Cunzac, 2(2), 275-282. DOI:10.46780/sociedadcunzac.v2i2.55
Valente, V. B., de Melo Cardoso, D., Kayahara, G. M., Nunes, G. B., Tjioe, K. C., Biasoli, É. R., ... & Bernabé, D. G. (2021). Stress hormones promote DNA damage in human oral keratinocytes. Scientific Reports, 11(1), 19701. DOI: 10.1038/s41598-021-99224-w
Van Dam, K. (2020). Individual stress prevention through Qigong. International journal of environmental research and public health, 17(19), 7342. doi: 10.3390/ijerph17197342
Vélez Páez, J. L., Aguayo Moscoso, S. X., Montalvo Villagómez, M., Jara González, F., Vélez Páez, P. A., Velarde Montero, G., Rueda Barragán, F. E., & Torres Cabezas, P. (2021). Lactato: Fisiología, Bioquímica y Metabolismo de la Producción Energética Celular. INSPILIP, 5(1). https://doi.org/10.31790/inspilip.v5i1.6
Vermot, A., Petit-Härtlein, I., Smith, S. M., & Fieschi, F. (2021). NADPH oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants, 10(6), 890. DOI: 10.3390/antiox10060890
von Zglinicki, T., Wan, T., & Miwa, S. (2021). Senescence in post-mitotic cells: a driver of aging?. Antioxidants & redox signaling, 34(4), 308-323. DOI: 10.1089/ars.2020.8048
Wadji, D. L., Morina, N., Martin-Soelch, C., & Wicky, C. (2023). Methylation of the glucocorticoid receptor gene (NR3C1) in dyads mother-child exposed to intimate partner violence in Cameroon: Association with anxiety symptoms. Plos one, 18(4), DOI: 10.1371/journal.pone.0273602
Wadji, D. L., Tandon, T., Wanda, G. K., Wicky, C., Dentz, A., Hasler, G., ... & Martin-Soelch, C. (2021). Child maltreatment and NR3C1 exon 1F methylation, link with deregulated hypothalamus-pituitary-adrenal axis and psychopathology: A systematic review. Child Abuse & Neglect, 122, DOI: 10.1016/j.chiabu.2021.105304
Walsh, C. P., Bovbjerg, D. H., & Marsland, A. L. (2021). Glucocorticoid resistance and β2-adrenergic receptor signaling pathways promote peripheral pro-inflammatory conditions associated with chronic psychological stress: A systematic review across species. Neuroscience & Biobehavioral Reviews, 128, 117-135. DOI: 10.1016/j.neubiorev.2021.06.013
Whittemore, K., Vera, E., Martínez-Nevado, E., Sanpera, C., & Blasco, M. A. (2019). Telomere shortening rate predicts species life span. Proceedings of the National Academy of Sciences, 116(30), 15122-15127. DOI: 10.1073/pnas.1902452116
Woodburn, S. C., Bollinger, J. L., & Wohleb, E. S. (2021). The semantics of microglia activation: Neuroinflammation, homeostasis, and stress. Journal of neuroinflammation, 18(1), 1-16. DOI: 10.1186/s12974-021-02309-6
Yang, J., Fernández-Galilea, M., Martínez-Fernández, L., González-Muniesa, P., Pérez-Chávez, A., Martínez, J. A., & Moreno-Aliaga, M. J. (2019). Oxidative stress and non-alcoholic fatty liver disease: effects of omega-3 fatty acid supplementation. Nutrients, 11(4), 872, https://doi.org/10.3390/nu11040872
Yegorov, Y. E., Poznyak, A. V., Nikiforov, N. G., Sobenin, I. A., & Orekhov, A. N. (2020). The link between chronic stress and accelerated aging. Biomedicines, 8(7), 198. doi: 10.3390/biomedicines8070198
Yuan, D., Meng, Y., Ai, Z., & Zhou, S. (2024) Research trend of epigenetics and depression: adolescents' research needs to strengthen. Frontiers in Neuroscience, 17, doi: 10.3389/fnins.2023.1289019
Yuan, M., Yang, B., Rothschild, G., Mann, J. J., Sanford, L. D., Tang, X., ... & Zhang, W. (2023). Epigenetic regulation in major depression and other stress-related disorders: molecular mechanisms, clinical relevance and therapeutic potential. Signal Transduction and Targeted Therapy, 8(1), 309. DOI: 10.1038/s41392-023-01519-z
Zannas, A. S. (2019). Epigenetics as a key link between psychosocial stress and aging: concepts, evidence, mechanisms. Dialogues in clinical neuroscience, 21(4), 389-396. DOI: 10.31887/DCNS.2019.21.4/azannas
Zannas, A. S., & Chrousos, G. P. (2017). Epigenetic programming by stress and glucocorticoids along the human lifespan. Molecular psychiatry, 22(5), 640-646. DOI: 10.1038/mp.2017.35
Zannas, A. S., Jia, M., Hafner, K., Baumert, J., Wiechmann, T., Pape, J. C., ... & Binder, E. B. (2019b). Epigenetic upregulation of FKBP5 by aging and stress contributes to NF-κB–driven inflammation and cardiovascular risk. Proceedings of the National Academy of Sciences, 116(23), 11370-11379, DOI: 10.1073/pnas.1816847116
Zarse, E. M., Neff, M. R., Yoder, R., Hulvershorn, L., Chambers, J. E., & Chambers, R. A. (2019). The adverse childhood experiences questionnaire: Two decades of research on childhood trauma as a primary cause of adult mental illness, addiction, and medical diseases. Cogent Medicine, 6(1), DOI:10.1080/2331205X.2019.1581447
Zhang, H., Weyand, C. M., & Goronzy, J. J. (2021). Hallmarks of the aging T‐cell system. The FEBS journal, 288(24), 7123-7142. DOI: 10.1111/febs.15770
Zhang, L., Pitcher, L. E., Yousefzadeh, M. J., Niedernhofer, L. J., Robbins, P. D., & Zhu, Y. (2022). Cellular senescence: a key therapeutic target in aging and diseases. The Journal of Clinical Investigation, 132(15), DOI: 10.1172/JCI158450
Los derechos de autor son propiedad inalienable de los autores, quienes son los propietarios irrestrictos de sus derechos de propiedad intelectual. El contenido de los artículos científicos y de las publicaciones que aparecen en la revista es responsabilidad exclusiva de sus autores. La distribución de los artículos publicados en la Revista de la Pontificia Universidad Católica del Ecuador PUCE se realiza bajo una licencia Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional License.